×

Bounds for the distribution of the Frobenius traces associated to products of non-CM elliptic curves. (English) Zbl 1525.11062

Let \(g\in\mathbb{N}\) and \(A\) be an abelian variety defined over \(\mathbb{Q}\) and isogenous over \(\mathbb{Q}\) to a product of \(g\) elliptic curves defined over \(\mathbb{Q}\), pairwise non-isogenous over \(\overline{\mathbb{Q}}\) and each without complex multiplication. Let \(\mathcal{P}(A)\) be the set of the primes of good reduction for \(A\) and, for \(p\in\mathcal{P}(A)\), let \(a(A;p)\) stand for the Frobenius trace associated to \(A\) modulo \(p\), and let \[ \pi (A;x,t):=\mathrm{card}\,\{p|p\in\mathcal{P}(A), p\leq x, a(A;p)=t\}. \] Assuming the Generalised Riemann Hypothesis for Dedekind zeta functions, the authors prove that \[ \pi (A;x,t)<<_{A}x^{\alpha (t)}(\log x)^{-\beta (t)}\text{ for }x\rightarrow\infty \] with \[ \alpha (0)=1-(3g+1)^{-1},\beta(0)=1-2(3g+1)^{-1}, \]
\[ \alpha (t)=1-(3g+2)^{-1},\beta(t)=1-2(3g+2)^{-1}\text{ if }t\neq 0, \] improving thereby upon the previously known results.
Reviewer: B. Z. Moroz (Bonn)

MSC:

11G05 Elliptic curves over global fields
11G20 Curves over finite and local fields
11N05 Distribution of primes
11N36 Applications of sieve methods
11N37 Asymptotic results on arithmetic functions
11N56 Rate of growth of arithmetic functions

References:

[1] Akbari, A., David, C., and Juricevic, R., Average distributions and products of special values of \(\ L\) -series. Acta Arith.111(2004), no. 3, 239-268. · Zbl 1087.11035
[2] Akbary, A. and Park, J., On the Lang-Trotter conjecture for two elliptic curves. Ramanujan J.49, 2019, pp. 585-623. · Zbl 1437.11082
[3] Artin, E., Beweis des allgemeinen Reziprozitätsgesetzes. Hamb. Abh.5(1927), 353-363. · JFM 53.0144.04
[4] Baier, S. and Jones, N., A refined version of the Lang-Trotter conjecture. Int. Math. Res. Notices3(2009), 433-461. · Zbl 1188.11027
[5] Chen, H., Jones, N., and Serban, V., The Lang-Trotter conjecture for products of non-CM elliptic curves. Ramanujan J. (2020), to appear. arxiv:2006.11269 · Zbl 1517.11058
[6] Cojocaru, A. C., Davis, R., Silverberg, A., and Stange, K. E., Arithmetic properties of the Frobenius traces defined by a rational abelian variety (with two appendices by J-P. Serre). Int. Math. Res. Notices12(2017), 3557-3602. · Zbl 1405.11078
[7] Elkies, N. D., Distribution of supersingular primes. J. Arith.198-200(1991), 127-132. · Zbl 0754.14019
[8] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math.73(1983), 349-366. · Zbl 0588.14026
[9] Fouvry, É. and Murty, M. R., Supersingular primes common to two elliptic curves. In: Number theory (Paris, 1992-1993), London Math. Soc. Lecture Note Series, 215, Cambridge University Press, 1995, pp. 91-102. · Zbl 0852.11029
[10] Honda, T., Isogeny classes of abelian varieties over finite fields. J. Math. Soc. Japan20(1968), 83-95. · Zbl 0203.53302
[11] Katz, N. M., Lang-Trotter revisited. Bull. Am. Math. Soc.46(2009), no. 3, 413-457. · Zbl 1234.11072
[12] Lagarias, J. and Odlyzko, A., Effective versions of the Chebotarev density theorem. In: Fröhlich, A. (ed.), Algebraic number fields, Academic Press, New York, 1977, pp. 409-464. · Zbl 0362.12011
[13] Lang, S., Abelian varieties, Springer-Verlag, New York, Berlin, 1983. · Zbl 0516.14031
[14] Lang, S. and Trotter, H., Frobenius distributions in \({GL}_2\) -extensions, Lecture Notes in Mathematics, 504, Springer Verlag, Berlin, New York, 1976. · Zbl 0329.12015
[15] Lombardo, D., An explicit open image theorem for products of elliptic curves. J. Num. Theory168(2016), 386-412. · Zbl 1396.11085
[16] Murty, M. R., Murty, V. K., and Saradha, N., Modular forms and the Chebotarev density theorem. Amer. J. Math.110(1988), no. 2, 253-281. · Zbl 0644.10018
[17] Murty, V. K., Modular forms and the Chebotarev density theorem II. In: Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Notes Series, 247, Cambridge University Press, Cambridge, 1997, pp. 287-308. · Zbl 0988.11018
[18] Oort, F., Abelian varieties over finite fields. Higher-dimensional geometry over finite fields, NATO Sci. Peace Scur. Ser. D Inf. Commun. Secur., 16, IOS, Amsterdam, 2008, pp. 123-188. · Zbl 1181.14029
[19] Serre, J-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math.15(1972), no. 4, 259-331. · Zbl 0235.14012
[20] Serre, J-P., Quelques applications du théorème de densité de Chebotarev. Publ. Math. I. H. E. S.54(1981), 123-201. · Zbl 0496.12011
[21] Serre, J-P. and Tate, J., Good reduction of abelian varieties. Ann. Math.88(1968), 492-517; Oeuvres/Collected Papers OO, Springer Verlag, Berlin, 1985, pp. 472-497. · Zbl 0172.46101
[22] Thorner, J. and Zaman, A., A Chebotarev variant of the Brun-Titchmarsh theorem and bounds for the Lang-Trotter conjectures. Int. Math. Res. Notices16(2018), 4991-5027. · Zbl 1447.11115
[23] Toyama, H., A note on the different of the composed field. Kodai Math. Sem. Rep.7(1955), no. 2, 43-44. · Zbl 0065.02403
[24] Wan, D., On the Lang-Trotter conjecture. J. Num. Theory35(1990), 247-268. · Zbl 0719.14022
[25] Waterhouse, W. C., Abelian varieties over finite fields. Ann. Sc. Ec. Norm. Sup.2(1969), 521-560. · Zbl 0188.53001
[26] Zywina, D., Bounds for the Lang-Trotter Conjectures, in SCHOLAR—A scientific celebration highlighting open lines of arithmetic research, Contemporary Mathematics, 655, American Mathematical Society, Providence, RI, 2015, pp. 235-256. · Zbl 1394.11050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.