×

The Nakayama automorphism of the almost Calabi-Yau algebras associated to \(\mathrm{SU}(3)\) modular invariants. (English) Zbl 1267.81275

Summary: We determine the Nakayama automorphism of the almost Calabi-Yau algebra \(A\) associated to the braided subfactors or Nimrep graphs associated to each \(SU(3)\) modular invariant. We use this to determine a resolution of \(A\) as an \(A\)-\(A\) bimodule, which will yield a projective resolution of \(A\).

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
46L87 Noncommutative differential geometry
58D29 Moduli problems for topological structures

References:

[1] Behrend R.E., Pearce P.A., Petkova V.B., Zuber J.-B.: Boundary conditions in rational conformal field theories. Nucl. Phys. B 579, 707–773 (2000) · Zbl 1071.81570 · doi:10.1016/S0550-3213(00)00225-X
[2] Bion-Nadal, J.: An example of a subfactor of the hyperfinite II 1 factor whose principal graph invariant is the Coxeter graph E 6. In: Current topics in operator algebras (Nara, 1990), River Edge, NJ: World Sci. Publ., 1991, pp. 104–113 · Zbl 0816.46063
[3] Böckenhauer, J.: Lecture at Warwick Workshop on Modular Invariants, Operator Algebras and Quotient Singularities, September 1999
[4] Böckenhauer J., Evans D.E.: Modular invariants, graphs and {\(\alpha\)}-induction for nets of subfactors. I. Commun. Math. Phys. 197, 361–386 (1998) · Zbl 0924.46047 · doi:10.1007/s002200050455
[5] Böckenhauer J., Evans D.E.: Modular invariants, graphs and {\(\alpha\)}-induction for nets of subfactors. II. Commun. Math. Phys. 200, 57–103 (1999) · Zbl 1151.46316 · doi:10.1007/s002200050523
[6] Böckenhauer J., Evans D.E.: Modular invariants, graphs and {\(\alpha\)}-induction for nets of subfactors. III. Commun. Math. Phys. 205, 183–228 (1999) · Zbl 0949.46030 · doi:10.1007/s002200050673
[7] Böckenhauer J., Evans D.E.: Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Commun. Math. Phys. 213, 267–289 (2000) · Zbl 0987.46044 · doi:10.1007/s002200000241
[8] Böckenhauer, J., Evans, D.E.: Modular invariants and subfactors. In: Mathematical physics in mathematics and physics (Siena, 2000), Fields Inst. Commun. 30, 11–37, Providence, RI, Amer. Math. Soc., 2001, pp. 11–37 · Zbl 1030.46077
[9] Böckenhauer, J., Evans, D.E.: Modular invariants from subfactors. In: Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math. 294, Providence, RI: Amer. Math. Soc., 2002, pp. 95–131
[10] Böckenhauer J., Evans D.E., Kawahigashi Y.: On {\(\alpha\)}-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208, 429–487 (1999) · Zbl 0948.46048 · doi:10.1007/s002200050765
[11] Böckenhauer J., Evans D.E., Kawahigashi Y.: Chiral structure of modular invariants for subfactors. Commun. Math. Phys. 210, 733–784 (2000) · Zbl 0988.46047 · doi:10.1007/s002200050798
[12] Bocklandt R.: Graded Calabi Yau algebras of dimension 3. J. Pure Appl. Algebra 212, 14–32 (2008) · Zbl 1132.16017 · doi:10.1016/j.jpaa.2007.03.009
[13] Brenner S., Butler M.C.R., King A.D.: Periodic algebras which are almost Koszul. Algebr. Represent. Theory 5, 331–367 (2002) · Zbl 1056.16003 · doi:10.1023/A:1020146502185
[14] Broomhead, N.: Dimer models and Calabi-Yau algebras. PhD thesis, University of Bath, 2008 · Zbl 1237.14002
[15] Cappelli A., Itzykson C., Zuber J.-B.: The A classification of minimal and A 1 (1) conformal invariant theories. Commun. Math. Phys. 113, 1–26 (1987) · Zbl 0639.17008 · doi:10.1007/BF01221394
[16] Cooper, B.: Almost Koszul Duality and Rational Conformal Field Theory. PhD thesis, University of Bath, 2007
[17] Crawley-Boevey W., Holland M.P.: Noncommutative deformations of Kleinian singularities. Duke Math. J. 92, 605–635 (1998) · Zbl 0974.16007 · doi:10.1215/S0012-7094-98-09218-3
[18] Di Francesco P., Zuber J.-B.: SU(N) lattice integrable models associated with graphs. Nucl. Phys. B 338, 602–646 (1990) · Zbl 0748.17029 · doi:10.1016/0550-3213(90)90645-T
[19] Erdmann, K., Snashall, N.: On Hochschild cohomology of preprojective algebras. I, II. J. Algebra 205, 391–412, 413–434 (1998) · Zbl 0937.16012
[20] Erdmann, K., Snashall, N.: Preprojective algebras of Dynkin type, periodicity and the second Hochschild cohomology. In: Algebras and modules, II (Geiranger, 1996), CMS Conf. Proc. 24, Providence, RI: Amer. Math. Soc., 1998, pp. 183–193 · Zbl 1034.16501
[21] Etingof P., Ostrik V.: Module categories over representations of SL q (2) and graphs. Math. Res. Lett. 11, 103–114 (2004) · Zbl 1053.17010 · doi:10.4310/MRL.2004.v11.n1.a10
[22] Evans, D.E.: Critical phenomena, modular invariants and operator algebras. In: Operator algebras and mathematical physics (Constanţa, 2001), Bucharest: Theta, 2003, pp. 89–113 · Zbl 1284.46051
[23] Evans D.E., Kawahigashi Y.: Orbifold subfactors from Hecke algebras. Commun. Math. Phys. 165, 445–484 (1994) · Zbl 0805.46077 · doi:10.1007/BF02099420
[24] Evans, D.E., Kawahigashi, Y.: Quantum symmetries on operator algebras, Oxford Mathematical Monographs. New York: The Clarendon Press/Oxford University Press, 1998 · Zbl 0924.46054
[25] Evans D.E., Pugh M.: Ocneanu Cells and Boltzmann Weights for the $${SU(3)\(\backslash\),\(\backslash\)mathcal{ADE}}$$ Graphs. Münster J. Math. 2, 95–142 (2009) · Zbl 1189.81192
[26] Evans D.E., Pugh M.: SU(3)-Goodman-de la Harpe-Jones subfactors and the realisation of SU(3) modular invariants. Rev. Math. Phys. 21, 877–928 (2009) · Zbl 1187.46049 · doi:10.1142/S0129055X09003761
[27] Evans, D.E., Pugh, M.: A 2-Planar Algebras I, Quantum Topol., 1, 321–377 (2010) Updated version after pub. at http://arxiv.org/abs/0906.9225v6 [math.OA], 2011 · Zbl 1213.46058
[28] Evans D.E., Pugh M.: A 2-Planar Algebras II: Planar Modules. J. Funct. Anal, 261, 1923–1954 (2011) · Zbl 1230.46053 · doi:10.1016/j.jfa.2011.05.023
[29] Evans D.E., Pugh M.: Spectral Measures and Generating Series for Nimrep Graphs in Subfactor Theory. Commun. Math. Phys. 295, 363–413 (2010) · Zbl 1210.46046 · doi:10.1007/s00220-009-0902-5
[30] Evans D.E., Pugh M.: Spectral Measures and Generating Series for Nimrep Graphs in Subfactor Theory II: SU(3). Commun. Math. Phys. 301, 771–809 (2011) · Zbl 1217.46041 · doi:10.1007/s00220-010-1157-x
[31] Evans, D.E., Pugh, M.: The Nakayama automorphism of the almost Calabi-Yau algebras associated to SU(3) modular invariants. http://arxiv.org/abs/1008.1003v2 [math.OA], 2011 · Zbl 1267.81275
[32] Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. II. Geometric aspects and conformal covariance, Rev. Math. Phys. Special issue, 113–157 (1992) · Zbl 0774.46041
[33] Fröhlich J., Gabbiani F.: Braid statistics in local quantum theory. Rev. Math. Phys. 2, 251–353 (1990) · Zbl 0723.57002 · doi:10.1142/S0129055X90000107
[34] Fuchs J., Runkel I., Schweigert C.: Twenty five years of two-dimensional rational conformal field theory. J. Math. Phys. 51, 015210 (2010) · Zbl 1417.81016 · doi:10.1063/1.3277118
[35] Gannon T.: The classification of affine SU(3) modular invariant partition functions. Commun. Math. Phys. 161, 233–263 (1994) · Zbl 0806.17031 · doi:10.1007/BF02099776
[36] Gannon, T.: Private communication, 2001
[37] Gel’fand I.M., Ponomarev V.A.: Model algebras and representations of graphs. Funk. Anal. i Pril. 13, 1–12 (1979) · Zbl 0423.70018 · doi:10.1007/BF01076433
[38] Ginzburg, V.: Calabi-Yau algebras. http://arxiv.org/abs/math/0612139v3 [math.AG], 2007
[39] Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras MSRI Publications, 14, New York: Springer-Verlag, 1989 · Zbl 0698.46050
[40] Goodman F.M. Wenzl H.: Ideals in the Temperley-Lieb Category. Appendix to Freedman, Michael H., A magnetic model with a possible Chern-Simons phase. Commun. Math. Phys. 234, 129–183 (2003) · Zbl 1060.81054 · doi:10.1007/s00220-002-0785-1
[41] Graves, T.: Representations of affine truncations of representation involutive-semirings of Lie algebras and root systems of higher type, MSc thesis, University of Alberta, 2010
[42] Izumi M.: Application of fusion rules to classification of subfactors. Publ. Res. Inst. Math. Sci. 27, 953–994 (1991) · Zbl 0765.46048 · doi:10.2977/prims/1195169007
[43] Izumi M.: On flatness of the Coxeter graph E 8. Pacific J. Math. 166, 305–327 (1994) · Zbl 0822.46073 · doi:10.2140/pjm.1994.166.305
[44] Izumi M.: Subalgebras of infinite C*-algebras with finite Watatani indices. II. Cuntz-Krieger algebras. Duke Math. J. 91, 409–461 (1998) · Zbl 0949.46023 · doi:10.1215/S0012-7094-98-09118-9
[45] Jimbo M.: A q-analogue of $${U(\(\backslash\)mathfrak{gl}(N+1))}$$ , Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11, 247–252 (1986) · Zbl 0602.17005 · doi:10.1007/BF00400222
[46] Jones V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983) · Zbl 0508.46040 · doi:10.1007/BF01389127
[47] Jones, V.F.R.: The planar algebra of a bipartite graph. In: Knots in Hellas ’98 (Delphi), Ser. Knots Everything 24, River Edge, NJ: World Sci. Publ., 2000, pp. 94–117
[48] Kac, V.G.: Infinite-dimensional Lie algebras. Third Edition, Cambridge: Cambridge University Press, 1990 · Zbl 0716.17022
[49] Kauffman L.H.: State models and the Jones polynomial. Topology 26, 395–407 (1987) · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[50] Kawahigashi Y.: On flatness of Ocneanu’s connections on the Dynkin diagrams and classification of subfactors. J. Funct. Anal. 127, 63–107 (1995) · Zbl 0829.46048 · doi:10.1006/jfan.1995.1003
[51] Kirillov A. Jr, Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of $${\(\backslash\)mathfrak{sl}_2}$$ conformal field theories. Adv. Math. 171, 183–227 (2002) · Zbl 1024.17013 · doi:10.1006/aima.2002.2072
[52] Kosaki H.: Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal. 66, 123–140 (1986) · Zbl 0607.46034 · doi:10.1016/0022-1236(86)90085-6
[53] Kuperberg G.: Spiders for rank 2 Lie algebras. Commun. Math. Phys. 180, 109–151 (1996) · Zbl 0870.17005 · doi:10.1007/BF02101184
[54] Longo R.: Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial. Commun. Math. Phys. 130, 285–309 (1990) · Zbl 0705.46038 · doi:10.1007/BF02473354
[55] Malkin A., Ostrik V., Vybornov M.: Quiver varieties and Lusztig’s algebra. Adv. Math. 203, 514–536 (2006) · Zbl 1120.16015 · doi:10.1016/j.aim.2005.05.002
[56] Morrison S., Peters E., Snyder N.: Skein Theory for the D 2n Planar Algebras. J. Pure Appl. Algebra 214, 117–139 (2010) · Zbl 1191.46051 · doi:10.1016/j.jpaa.2009.04.010
[57] Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser. 136, 119–172, Cambridge: Cambridge Univ. Press, 1988, pp. 119–172 · Zbl 0696.46048
[58] Ocneanu, A.: Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors. (Notes recorded by S. Goto). In: Lectures on operator theory, (ed. B. V. Rajarama Bhat et al.), The Fields Institute Monographs, Providence, R.I.: Amer. Math. Soc., 2000, pp. 243–323
[59] Ocneanu, A.: Higher Coxeter Systems (2000). Talk given at MSRI. http://www.msti.org/web/msri/online-videos/-/video/showsemester/pre2004
[60] Ocneanu, A.: The classification of subgroups of quantum SU(N). In Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math. 294, Providence, RI: Amer. Math. Soc., 2002, pp. 133–159 · Zbl 1193.81055
[61] Ohtsuki T., Yamada S.: Quantum SU(3) invariant of 3-manifolds via linear skein theory. J. Knot Theory Ramifications 6, 373–404 (1997) · Zbl 0949.57011 · doi:10.1142/S021821659700025X
[62] Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003) · Zbl 1044.18004 · doi:10.1007/s00031-003-0515-6
[63] Reid, M.: La correspondance de McKay, Astérisque (2002), 53–72. Séminaire Bourbaki, Vol. 1999/2000, exp. no. 867, 53–72, available at http://archive.numdam.org/ARCHIVE/SB/SB_1999-2000_42_/SB_1999-2000_42_53/SB_1999-2000_42_53_O.pdf
[64] Suciu, L.C.: The SU(3) Wire Model. PhD thesis, The Pennsylvania State University, 1997
[65] Turaev, V.G.: Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics, 18, Berlin: Walter de Gruyter & Co. 1994 · Zbl 0812.57003
[66] van den Bergh, M.: Non-commutative crepant resolutions. In: The legacy of Niels Henrik Abel, Berlin: Springer, 2004, pp. 749–770 · Zbl 1082.14005
[67] Wassermann A.: Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133, 467–538 (1998) · Zbl 0944.46059
[68] Wenzl H.: On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada 9, 5–9 (1987) · Zbl 0622.47019
[69] Wenzl H.: Hecke algebras of type A n and subfactors. Invent. Math. 92, 349–383 (1988) · Zbl 0663.46055 · doi:10.1007/BF01404457
[70] Xu F.: New braided endomorphisms from conformal inclusions. Commun. Math. Phys. 192, 349–403 (1998) · Zbl 0908.46044 · doi:10.1007/s002200050302
[71] Yamagami, S.: A categorical and diagrammatical approach to Temperley-Lieb algebras. http://arxiv.org/abs/math/0405267v2 [math.QA]
[72] Yamagata, K.: Frobenius algebras. In: Handbook of algebra, Vol. 1, Amsterdam: Elsevier, 1996, pp. 841–887 · Zbl 0879.16008
[73] Zuber, J.-B.: CFT, BCFT, ADE and all that. In: Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math. 294, Providence, RI: Amer. Math. Soc., 2002, pp. 233–266
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.