×

Radial rapid decay does not imply rapid decay. (La décroissance rapide radiale n’implique pas la décroissance rapide.) (English. French summary) Zbl 1527.42003

Summary: We provide a new, dynamical criterion for the radial rapid decay property. We work out in detail the special case of the group \(\Gamma:=\mathrm{SL}_2(A)\), where \(A:=\mathbb{F}_q[X,X^{-1}]\) is the ring of Laurent polynomials with coefficients in \(\mathbb{F}_q\), endowed with the length function coming from a natural action of \(\Gamma\) on a product of two trees, and show that it has the radial rapid decay (RRD) property and doesn’t have the rapid decay (RD) property. We show that the criterion also applies to all irreducible lattices (uniform or not) in semisimple Lie groups with finite center endowed with a length function defined with the help of a Finsler metric. When the rank is greater or equal to two and the lattice is non-uniform, the lattice has RRD but not RD. These examples answer a question asked by I. Chatterji [Contemp. Math. 691, 53–72 (2017; Zbl 1404.20032)] and moreover show that, unlike the RD property, the RRD property isn’t inherited by open subgroups.

MSC:

42A85 Convolution, factorization for one variable harmonic analysis
22F10 Measurable group actions
37A99 Ergodic theory

Citations:

Zbl 1404.20032

References:

[1] Albuquerque, P., Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal., 9, 1, 1-28 (1999) · Zbl 0954.53031 · doi:10.1007/s000390050079
[2] Anker, Jean-Philippe, La forme exacte de l’estimation fondamentale de Harish-Chandra, C. R. Acad. Sci. Paris Sér. I Math., 305, 9, 371-374 (1987) · Zbl 0636.22005
[3] Bader, Uri; Muchnik, Roman, Boundary unitary representations – irreducibility and rigidity, J. Mod. Dyn., 5, 1, 49-69 (2011) · Zbl 1259.46051 · doi:10.3934/jmd.2011.5.49
[4] Bourdon, Marc, Structure conforme au bord et flot géodésique d’un \(\text{CAT}(-1)\)-espace, Enseign. Math. (2), 41, 1-2, 63-102 (1995) · Zbl 0871.58069
[5] Boyer, Adrien, Equidistribution, ergodicity, and irreducibility in \(\text{CAT}(-1)\) spaces, Groups Geom. Dyn., 11, 3, 777-818 (2017) · Zbl 1375.37022 · doi:10.4171/GGD/415
[6] Boyer, Adrien; Link, G.; Pittet, Ch, Ergodic boundary representations, Ergodic Theory Dynam. Systems, 39, 8, 2017-2047 (2019) · Zbl 1432.37007 · doi:10.1017/etds.2017.118
[7] Boyer, Adrien; Pinochet Lobos, Antoine, An ergodic theorem for the quasi-regular representation of the free group, Bull. Belg. Math. Soc. Simon Stevin, 24, 2, 243-255 (2017) · Zbl 1384.37008 · doi:10.36045/bbms/1503453708
[8] Chatterji, Indira, Around Langlands Correspondences, 691, Introduction to the rapid decay property, 55-72 (2017), Amer. Math. Soc.: Amer. Math. Soc., Providence, RI · Zbl 1404.20032 · doi:10.1090/conm/691/13893
[9] Chatterji, Indira; Pittet, Ch; Saloff-Coste, L., Connected Lie groups and property RD, Duke Math. J., 137, 3, 511-536 (2007) · Zbl 1119.22006 · doi:10.1215/S0012-7094-07-13733-5
[10] Chatterji, Indira; Ruane, K., Some geometric groups with rapid decay, Geom. Funct. Anal., 15, 2, 311-339 (2005) · Zbl 1134.22005 · doi:10.1007/s00039-005-0508-9
[11] Garncarek, Ł., Boundary representations of hyperbolic groups (2014)
[12] Garncarek, Ł., Mini-course: Property of Rapid Decay (2016)
[13] Gorodnik, Alexander; Nevo, Amos, The ergodic theory of lattice subgroups, 172, xiv+121 p. pp. (2010), Princeton University Press: Princeton University Press, Princeton, NJ
[14] Haagerup, Uffe, An example of a nonnuclear \(C^{\ast } \)-algebra, which has the metric approximation property, Invent. Math., 50, 3, 279-293 (197879) · Zbl 0408.46046 · doi:10.1007/BF01410082
[15] Jolissaint, Paul, Rapidly decreasing functions in reduced \(C^*\)-algebras of groups, Trans. Amer. Math. Soc., 317, 1, 167-196 (1990) · Zbl 0711.46054 · doi:10.2307/2001458
[16] Lafforgue, Vincent, A proof of property (RD) for cocompact lattices of \(\text{SL}_3(\mathbb{R})\) and \(\text{SL}_3(\mathbb{C})\), J. Lie Theory, 10, 2, 255-267 (2000) · Zbl 0981.46046
[17] Lubotzky, Alexander; Mozes, Shahar; Raghunathan, M. S., The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math., 91, 5-53 (2000) · Zbl 0988.22007 · doi:10.1007/BF02698740
[18] Margulis, G. A., Discrete subgroups of semisimple Lie groups, 17, x+388 p. pp. (1991), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0732.22008 · doi:10.1007/978-3-642-51445-6
[19] Perrone, Mattia, Radial rapid decay property for cocompact lattices, J. Funct. Anal., 256, 11, 3471-3489 (2009) · Zbl 1168.22006 · doi:10.1016/j.jfa.2009.02.007
[20] Pier, Jean-Paul, Amenable locally compact groups, x+418 p. pp. (1984), John Wiley & Sons, Inc.: John Wiley & Sons, Inc., New York · Zbl 0621.43001
[21] Pinochet Lobos, Antoine, Théorèmes ergodiques, actions de groupes et représentations unitaires (2019)
[22] Serre, Jean-Pierre, Trees (2008), Cambridge University Press
[23] Shalom, Yehuda, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2), 152, 1, 113-182 (2000) · Zbl 0970.22011 · doi:10.2307/2661380
[24] Valette, Alain, On the Haagerup inequality and groups acting on \(\widetilde{A}_n\)-buildings, Ann. Inst. Fourier, 47, 4, 1195-1208 (1997) · Zbl 0886.51003 · doi:10.5802/aif.1596
[25] Valette, Alain, Introduction to the Baum-Connes conjecture. From notes taken by Indira Chatterji, with an appendix by Guido Mislin, x+104 p. pp. (2002), Birkhäuser Verlag, Basel · Zbl 1136.58013 · doi:10.1007/978-3-0348-8187-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.