×

Coprimeness properties of nonlinear fractional system realizations. (English) Zbl 0909.93028

Summary: The relationship between the Bezout and the set-theoretic approaches to left coprimeness is studied. It is shown that left coprimeness in the set-theoretic sense implies left coprimeness in the Bezout sense. In addition to these results, we investigate whether some properties for linear left coprime realizations carry over to the nonlinear case, for example we examine the relations between two left coprime realizations of the same system.

MSC:

93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Baños, A., Stabilization of nonlinear systems based on a generalized Bezout identity, Automatica, 32, 591-595 (1996) · Zbl 0853.93051
[2] Chen, G.; de Figueiredo, R. J.P., On construction of coprime factorizations for nonlinear feedback control systems, IEEE Proc. on Circuits, Systems and Signal Processing, 11, 285-307 (1992) · Zbl 0787.93037
[3] Danow, R.; Chen, G., A necessary and sufficient condition for right coprime factorization of nonlinear systems, IEEE Proc. on Circuits, Systems Signal Processing, 12, 489-492 (1993) · Zbl 0780.93034
[4] Dasgupta, S.; Anderson, B. D.O., Closed loop identification of nonlinear time varying systems, Automatica, 32, 1349-1360 (1996) · Zbl 0869.93012
[5] Hammer, J., Nonlinear systems, stabilization, and coprimeness, Int. J. Control, 42, 1-20 (1985) · Zbl 0568.93035
[6] Hammer, J., Internally stable nonlinear systems with disturbances: a parametrization, IEEE Trans. Automat. Control, 39, 300-315 (1994) · Zbl 0800.93494
[7] F.R. Hansen, G.F. Franklin, R.L. Kosut, Closed-loop iden- tification via the partial representation: experiment design, in: Proc. Am. Control Conf., 1989, pp. 386-391.; F.R. Hansen, G.F. Franklin, R.L. Kosut, Closed-loop iden- tification via the partial representation: experiment design, in: Proc. Am. Control Conf., 1989, pp. 386-391.
[8] Lee, W. S.; Anderson, B. D.O.; Kosut, R. L.; Mareels, I. M.Y., A new approach to adaptive robust control, Int. J. Adaptive Control Signal Process., 7, 183-211 (1993) · Zbl 0781.93051
[9] N. Linard, B.D.O. Anderson, Identification of nonlinear plants under linear control using Youla-Kucera parametrisations, in: Proc. 35th IEEE Conf. on Decision and Control, Kobe, Japan, 1996, pp. 1094-1099.; N. Linard, B.D.O. Anderson, Identification of nonlinear plants under linear control using Youla-Kucera parametrisations, in: Proc. 35th IEEE Conf. on Decision and Control, Kobe, Japan, 1996, pp. 1094-1099.
[10] N. Linard, B.D.O. Anderson, F. De Bruyne, Identification of a nonlinear plant under nonlinear feedback using left coprime fractional based representations, Automatica (1997) Submitted.; N. Linard, B.D.O. Anderson, F. De Bruyne, Identification of a nonlinear plant under nonlinear feedback using left coprime fractional based representations, Automatica (1997) Submitted. · Zbl 0944.93006
[11] Paice, A. D.B.; Moore, J. B.; Horowitz, R., Nonlinear feedback system stability via coprime factorization analysis, J. Math. Systems Estimation Control, 2, 293-321 (1992) · Zbl 0778.93100
[12] A.D.B. Paice, A.J. van der Schaft, Stable kernel representations as nonlinear left coprime factorizations, in: Proc. 33rd Conf. on Decision and Control, Orlando, Florida, 1994, pp. 2786-2791.; A.D.B. Paice, A.J. van der Schaft, Stable kernel representations as nonlinear left coprime factorizations, in: Proc. 33rd Conf. on Decision and Control, Orlando, Florida, 1994, pp. 2786-2791.
[13] A.D.B. Paice, A.J. van der Schaft, On the parametrization and construction of nonlinear stabilizing controllers, in: Proc. 3rd IFAC Sym. on Nonlinear Control Systems, 1995, pp. 509-513.; A.D.B. Paice, A.J. van der Schaft, On the parametrization and construction of nonlinear stabilizing controllers, in: Proc. 3rd IFAC Sym. on Nonlinear Control Systems, 1995, pp. 509-513.
[14] A.D.B. Paice, A.J. van der Schaft, The Youla parametrization for nonlinear feedback systems with additive disturbances, in: Proc. 34th Conf. on Decision and Control, New Orleans, Louisiana, 1995, pp. 2976-2981.; A.D.B. Paice, A.J. van der Schaft, The Youla parametrization for nonlinear feedback systems with additive disturbances, in: Proc. 34th Conf. on Decision and Control, New Orleans, Louisiana, 1995, pp. 2976-2981.
[15] R.J.P. Schrama, P.M.J. Van den Hof, An iterative scheme for identification and control design based on coprime factorizations, in: Proc. Am. Control Conf., 1992, pp. 2842-2846.; R.J.P. Schrama, P.M.J. Van den Hof, An iterative scheme for identification and control design based on coprime factorizations, in: Proc. Am. Control Conf., 1992, pp. 2842-2846.
[16] Tay, T. T.; Moore, J. B., Left coprime factorizations and a class of stabilizing controllers for nonlinear systems, Int. J. Control, 49, 1235-1248 (1989) · Zbl 0681.93055
[17] Verma, M. S., Coprime fractional representations and stability of nonlinear feedback systems, Int. J. Control, 48, 897-918 (1988) · Zbl 0661.93017
[18] M. Vidyasagar, Control Systems Synthesis: A Factorization Approach, MIT Press, Boston, 1985.; M. Vidyasagar, Control Systems Synthesis: A Factorization Approach, MIT Press, Boston, 1985. · Zbl 0655.93001
[19] C.D. Youla, H.A. Jabr, J.J. Bongiorno Jr., Modern Wiener-Hopf design of optimal controllers, Part 1: the single-input-single-output case, IEEE Trans. Automat. Control 21 (1976) 3-13.; C.D. Youla, H.A. Jabr, J.J. Bongiorno Jr., Modern Wiener-Hopf design of optimal controllers, Part 1: the single-input-single-output case, IEEE Trans. Automat. Control 21 (1976) 3-13. · Zbl 0323.93047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.