×

Anomalous diffusion in one-dimensional disordered systems: a discrete fractional Laplacian method. (English) Zbl 1514.60113

Summary: This work extends the applications of Anderson-type Hamiltonians to include transport characterized by anomalous diffusion. Herein, we investigate the transport properties of a one-dimensional disordered system that employs the discrete fractional Laplacian, \((-\Delta)^s\), \(s\in(0, 2)\) in combination with results from spectral and measure theory. It is a classical mathematical result that the standard Anderson model exhibits localization of energy states for all nonzero disorder in one-dimensional systems. Numerical simulations utilizing our proposed model demonstrate that this localization effect is enhanced for sub-diffusive realizations of the operator, \(s\in(1, 2)\) while the super-diffusive realizations of the operator, \(s\in(0, 1)\) can exhibit energy states with less localized features. These results suggest that the proposed method can be used to examine anomalous diffusion in physical systems where strong correlations, structural defects, and nonlocal effects are present.

MSC:

60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
60G22 Fractional processes, including fractional Brownian motion
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)

References:

[1] Bell G I and Glasstone S 1970 Nuclear reactor theory No TID-25606
[2] Bachelier L 2011 Louis Bachelier’s Theory of Speculation: the Origins of Modern Finance (Princeton, NJ: Princeton University Press) · doi:10.1515/9781400829309
[3] Nelson E 1967 Dynamical Theories of Brownian Motion vol 3 (Princeton, NJ: Princeton University Press) · Zbl 0165.58502
[4] Bouchaud J and Georges A 1990 Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications Phys. Rep.195 127-293 · doi:10.1016/0370-1573(90)90099-N
[5] Bouchaud J P 1999 Intermittent dynamics and aging in glassy systems Anomalous Diffusion From Basics to Applications ed A Pękalski and K Sznajd-Weron (Berlin: Springer) pp 140-50 · doi:10.1007/BFb0106838
[6] Binder K, Bennemann C, Baschnagel J and Paul W 1999 Anomalous diffusion of polymers in supercooled melts near the glass transition Anomalous Diffusion From Basics to Applications (Berlin: Springer) pp 124-39 · doi:10.1007/BFb0106837
[7] Upadhyaya A, Rieu J, Glazier J A and Sawada Y 2001 Anomalous diffusion and non-Gaussian velocity distribution of hydra cells in cellular aggregates Physica A 293 549-58 · doi:10.1016/S0378-4371(01)00009-7
[8] Palombo M, Gabrielli A, Servedio V D P, Ruocco G and Capuani S 2013 Structural disorder and anomalous diffusion in random packing of spheres Sci. Rep.3 2631 · doi:10.1038/srep02631
[9] Drummond W E and Rosenbluth M N 1962 Anomalous diffusion arising from microinstabilities in a plasma Phys. Fluids5 1507-13 · Zbl 0108.43403 · doi:10.1063/1.1706559
[10] Tarasov V E and Zaslavsky G M 2006 Fractional dynamics of systems with long-range interaction Commun. Nonlinear Sci. Numer. Simul.11 885-98 · Zbl 1106.35103 · doi:10.1016/j.cnsns.2006.03.005
[11] Shlesinger M F, Zaslavsky G M and Klafter J 1993 Strange kinetics Nature363 31 · doi:10.1038/363031a0
[12] Metzler R and Klafter J 2004 The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen.37 R161 · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[13] Hansen A E, Jullien M C, Paret J and Tabeling P 1999 Dispersion in freely decaying and forced 2D turbulence Anomalous Diffusion From Basics to Applications (Berlin: Springer) pp 186-96 · doi:10.1007/BFb0106842
[14] Liaw C 2013 Approach to the extended states conjecture J. Stat. Phys.153 1022-38 · Zbl 1302.82011 · doi:10.1007/s10955-013-0879-5
[15] Ciaurri Ó, Roncal L, Stinga P R, Torrea J L and Varona J L 2015 Fractional discrete Laplacian versus discretized fractional Laplacian (arXiv:1507.04986)
[16] Jakšić V and Last Y 2000 Spectral structure of Anderson type Hamiltonians Inventiones Math.141 561-77 · Zbl 0962.60056 · doi:10.1007/s002220000076
[17] Birman M S and Solomjak M Z 2012 Spectral Theory of Self-Adjoint Operators in Hilbert Space vol 5 (Berlin: Springer)
[18] Kato T 2013 Perturbation Theory for Linear Operators vol 132 (Berlin: Springer)
[19] Liaw C, King W and Kirby R C 2014 Delocalization for the 3D discrete random Schrödinger operator at weak disorder J. Phys. A: Math. Theor.47 305202 · Zbl 1305.82031 · doi:10.1088/1751-8113/47/30/305202
[20] Kostadinova E G, Liaw C D, Matthews L S and Hyde T W 2016 Physical interpretation of the spectral approach to delocalization in infinite disordered systems Mater. Res. Express3 125904 · doi:10.1088/2053-1591/3/12/125904
[21] Kostadinova E G, Busse K, Ellis N, Padgett J L, Liaw C D, Matthews L S and Hyde T W 2017 Delocalization in infinite disordered two-dimensional lattices of different geometry Phys. Rev. B 96 235408 · doi:10.1103/PhysRevB.96.235408
[22] Kostadinova E G, Guyton F, Cameron A, Busse K, Liaw C, Matthews L S and Hyde T W 2018 Transport properties of disordered two-dimensional complex plasma crystal Contrib. Plasma Phys.58 209-16 · doi:10.1002/ctpp.201700111
[23] Kostadinova E G, Liaw C D, Hering A S, Cameron A, Guyton F, Matthews L S and Hyde T W 2019 Spectral approach to transport in a two-dimensional honeycomb lattice with substitutional disorder Phys. Rev. B 99 024115 · doi:10.1103/PhysRevB.99.024115
[24] Laskin N 2002 Fractional Schrödinger equation Phys. Rev. E 66 056108 · doi:10.1103/PhysRevE.66.056108
[25] Lazo E and Diez E 2010 Conducting to non-conducting transition in dual transmission lines using a ternary model with long-range correlated disorder Phys. Lett. A 374 3538-45 · Zbl 1248.82068 · doi:10.1016/j.physleta.2010.06.031
[26] Shima H and Nakayama T 2005 Breakdown of Anderson localization in disordered quantum chains Microelectron. J.36 422-4 · doi:10.1016/j.mejo.2005.02.037
[27] Shima H and Nakayama T 2006 Metal-insulator transition in 1d correlated disorder Topology in Ordered Phases: (With CD-ROM) (Singapore: World Scientific) pp 271-6 · doi:10.1142/9789812772879_0043
[28] Getoor R K 1961 First passage times for symmetric stable processes in space Trans. Am. Math. Soc.101 75-90 · Zbl 0104.11203 · doi:10.1090/S0002-9947-1961-0137148-5
[29] Bogdan K and Byczkowski T 1999 Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains Stud. Math.133 53-92 · Zbl 0923.31003 · doi:10.4064/sm-133-1-53-92
[30] Baleanu D 2012 Fractional Calculus: Models and Numerical Methods vol 3 (Singapore: World Scientific) · doi:10.1142/8180
[31] Valdinoci E 2009 From the long jump random walk to the fractional Laplacian SeMA J.: Boletín de la Sociedad Española de Matemática Aplicada49 33-44 · Zbl 1242.60047
[32] Caffarelli L and Silvestre L 2007 An extension problem related to the fractional Laplacian Commun. PDE32 1245-60 · Zbl 1143.26002 · doi:10.1080/03605300600987306
[33] Cabré X and Tan J 2010 Positive solutions of nonlinear problems involving the square root of the Laplacian Adv. Math.224 2052-93 · Zbl 1198.35286 · doi:10.1016/j.aim.2010.01.025
[34] Chen Y K, Lei Z and Wei C H 2018 Extension problems related to the higher order fractional Laplacian Acta Math. Sin.34 655-61 · Zbl 1388.42071 · doi:10.1007/s10114-017-7325-6
[35] Kwaśnicki M 2017 Ten equivalent definitions of the fractional Laplace operator Fractional Calculus Appl. Anal.20 7-51 · Zbl 1375.47038
[36] Ciaurri Ó, Roncal L, Stinga P R, Torrea J L and Varona J L 2018 Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications Adv. Math.330 688-738 · Zbl 1391.35388 · doi:10.1016/j.aim.2018.03.023
[37] Meichsner J and Seifert C 2017 Fractional powers of non-negative operators in Banach spaces via the Dirichlet-to-Neumann operator (arXiv:1704.01876)
[38] Stinga P R and Torrea J L 2010 Extension problem and Harnack’s inequality for some fractional operators Commun. PDE35 2092-122 · Zbl 1209.26013 · doi:10.1080/03605301003735680
[39] Galé J E, Miana P J and Stinga P R 2013 Extension problem and fractional operators: semigroups and wave equations J. Evol. Equ.13 343-68 · Zbl 1336.47049 · doi:10.1007/s00028-013-0182-6
[40] Zoia A, Rosso A and Kardar M 2007 Fractional Laplacian in bounded domains Phys. Rev. E 76 021116 · doi:10.1103/PhysRevE.76.021116
[41] Huang Y and Oberman A 2014 Numerical methods for the fractional Laplacian: a finite difference-quadrature approach SIAM J. Numer. Anal.52 3056-84 · Zbl 1316.65071 · doi:10.1137/140954040
[42] Duo S, van Wyk H W and Zhang Y 2018 A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem J. Comput. Phys.355 233-52 · Zbl 1380.65323 · doi:10.1016/j.jcp.2017.11.011
[43] Ciaurri Ó, Alastair Gillespie T, Roncal L, Torrea J L and Varona J L 2017 Harmonic analysis associated with a discrete Laplacian J. d’Anal. Math.132 109-31 · Zbl 1476.39003 · doi:10.1007/s11854-017-0015-6
[44] Ros-Oton X and Serra J 2014 The Pohozaev identity for the fractional Laplacian Arch. Ration. Mech. Anal.213 587-628 · Zbl 1361.35199 · doi:10.1007/s00205-014-0740-2
[45] Vanderbei R 1984 Probabilistic solution of the Dirichlet problem for biharmonic functions in discrete space Ann. Probab.12 311-24 · Zbl 0543.60079 · doi:10.1214/aop/1176993292
[46] Mazzucchi S 2013 Probabilistic representations for the solution of higher order differential equations Int. J. PDE.2013 297857 · Zbl 1364.60084 · doi:10.1155/2013/297857
[47] Ciaurri Ó, Lizama C, Roncal L and Varona J L 2015 On a connection between the discrete fractional Laplacian and superdiffusion Appl. Math. Lett.49 119-25 · Zbl 1381.35215 · doi:10.1016/j.aml.2015.05.007
[48] Hundertmark D 2008 A short introduction to Anderson localization Analysis and Stochastics of Growth Processes and Interface Models (Oxford: Oxford University Press) pp 194-218 · Zbl 1304.82040 · doi:10.1093/acprof:oso/9780199239252.003.0009
[49] Laforgia A and Natalini P 2012 On the asymptotic expansion of a ratio of gamma functions J. Math. Anal. Appl.389 833-7 · Zbl 1242.33004 · doi:10.1016/j.jmaa.2011.12.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.