×

\(K\)-homology classes of Dirac operators on smooth subsets of singular spaces. (English) Zbl 1186.58016

Let \(X\) be a metrizable compact singular space with open dense submanifold \(M\), and let \(Y=X\setminus Y\). The short exact sequence of \(C^*\) algebras \[ 0\to C_0(M)\to C(X)\to C(Y)\to0 \] induces a six-term exact sequence in \(K\)-homology, which contains the following pieces: \[ \cdots\to KK_i(C(X),\mathbb{C})\to KK_i(C_0(M),\mathbb{C})\to KK_{i-1}(C(Y),\mathbb{C})\to\cdots \] for \(i\in\{0,1\}\) (the last map is the connecting homomorphism denoted by \(\partial\)). The notation \(K_i(X)\) and \(K_i(Y)\) can be used for \(KK_i(C(X),\mathbb{C})\) and \(KK_i(C(Y),\mathbb{C})\) because there is only one notion of \(K\)-homology for a compact metrizable space. Assume that \(M\) is equipped with a complete Riemannian metric and a spin structure, and let \(D\) be the corresponding Dirac operator acting on sections of the spinor bundle \(S\) over \(M\). Then \((L^2(S),D(1+D^*D)^{-1/2})\) represents a class \([D]_M\in KK_*(C_0(M),\mathbb{C})\). The first goal of the paper is to give conditions so that \([D]_M\) represents a class in \(K_*(X)\), which is equivalent to \(\partial([D]_M)=0\) in \(K_*(Y)\) according to the above exact sequence in \(K\)-homology. For instance, it is proved that this holds when the scalar curvature of \(M\) is properly positive and \(C(X)\) contains a dense subset of functions whose restrictions to \(M\) are smooth with bounded exterior derivative. Conditions are also given to get the same class in \(K_*(X)\) by using two different complete metrics on \(M\).
This work can be seen as part of a general program to get topological (or geometrical) invariants of \(X\) by using \(L^2\) analysis on \(M\).

MSC:

58J20 Index theory and related fixed-point theorems on manifolds
19K56 Index theory
19K35 Kasparov theory (\(KK\)-theory)
Full Text: DOI

References:

[1] M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Camb. Phil. Soc. 77 (1975), 43-69. · Zbl 0297.58008 · doi:10.1017/S0305004100049410
[2] S. Baaj and P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les \(C^*\)-modules Hilbertiens , C.R. Acad. Sci. Paris 296 (1983), 875-878. · Zbl 0551.46041
[3] P. Baum, R. Douglas and M. Taylor, Cycles and relative cycles in analytic \(K\)-homology , J. Differential Geom. 30 (1989), 761-804. · Zbl 0697.58050
[4] B. Blackadar, \(K\)-theory for operator algebras , MSRI Publications 5 , Springer-Verlag, New York, 1986. · Zbl 0597.46072
[5] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds , Proc. Symp. Pure Math. 36 , American Math. Soc., Providence, RI, 1980 · Zbl 0461.58002
[6] ——–, Spectral geometry of singular Riemannian spaces , J. Differential Geom. 18 (1983), 575-657. · Zbl 0529.58034
[7] ——–, On the spectral geometry of spaces with cone-like singularities , Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 2103-2106. JSTOR: · Zbl 0411.58003 · doi:10.1073/pnas.76.5.2103
[8] J. Cheeger, M. Goresky and R. MacPherson, \(L^2\)-cohomology and intersection homology of singular algebraic varieties , in Seminar on differential geometry , S.-T. Yau, ed., Princeton University Press, Princeton, NJ, 1982 · Zbl 0503.14008
[9] P. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations , J. Functional Anal. 12 (1973), 401-414. · Zbl 0263.35066 · doi:10.1016/0022-1236(73)90003-7
[10] A. Chou, The Dirac operator on spaces with conical singularities and positive scalar curvatures , Trans. Amer. Math. Soc. 289 (1985), 1-40. · Zbl 0559.58024 · doi:10.2307/1999686
[11] ——–, Criteria for selfadjointness of the Dirac operator on pseudomanifolds , Proc. Amer. Math. Soc. 106 (1989), 1107-1116. · Zbl 0685.58031 · doi:10.2307/2047301
[12] J. Fox, C. Gajdzinski and P. Haskell, Homology Chern characters of perturbed Dirac operators , Houston J. Math. 27 (2001), 97-121. · Zbl 0994.58014
[13] J. Fox, P. Haskell and W. Pardon, Two themes in index theory on singular varieties , Proc. Symp. Pure Math. 51 , Part 2, Amer. Math. Soc., Providence, RI, 1990 · Zbl 0712.58055
[14] M. Gromov and H.B. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds , Publ. Math. IHES 58 (1983), 83-196. · Zbl 0538.53047 · doi:10.1007/BF02953774
[15] N. Higson and J. Roe, Analytic \(K\)-homology , Oxford University Press, Oxford, 2000.
[16] G.G. Kasparov, The operator \(K\)-functor and extensions of \(C^*\)-algebras , Math. USSR Izv. 16 (1981), 513-572. · Zbl 0464.46054 · doi:10.1070/IM1981v016n03ABEH001320
[17] H.B. Lawson and M.-L. Michelsohn, Spin geometry , Princeton University Press, Princeton, 1989. · Zbl 0688.57001
[18] M. Lesch, Deficiency indices for symmetric Dirac operators on manifolds with conic singularities , Topology 32 (1993), 611-623. · Zbl 0790.58046 · doi:10.1016/0040-9383(93)90012-K
[19] W. Pardon and M. Stern, \(L^2\)-\(\overline\partial\)-cohomology of complex projective varieties , J. Amer. Math. Soc. 4 (1991), 603-621. JSTOR: · Zbl 0751.14011 · doi:10.2307/2939271
[20] N. Wright, \(C_0\) coarse geometry and scalar curvature , J. Functional Anal. 197 (2003), 469-488. · Zbl 1042.58009 · doi:10.1016/S0022-1236(02)00025-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.