×

Hawking radiation as quantum mechanical reflection. (English) Zbl 1515.83058

Summary: In this article, we explore an alternative derivation of Hawking radiation. Instead of the field-theoretic derivation, we have suggested a simpler calculation based on quantum mechanical reflection from a one-dimensional potential. The reflection coefficient shows an exponential fall in energy which, in comparison with the Boltzmann probability distribution, yields a temperature. The temperature is the same as Hawking temperature for spherically symmetric black holes. The derivation gives an exact local calculation of Hawking temperature that involves a region lying entirely outside the horizon. This is a crucial difference from the tunneling calculation, where it is necessary to involve a region inside the horizon.

MSC:

83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83C57 Black holes
83C45 Quantization of the gravitational field
51F15 Reflection groups, reflection geometries
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
80A10 Classical and relativistic thermodynamics
52A55 Spherical and hyperbolic convexity
81U26 Tunneling in quantum theory

Software:

DLMF

References:

[1] Hawking, SW, Black holes in general relativity, Commun. Math. Phys., 25, 152-166 (1972) · doi:10.1007/BF01877517
[2] Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199-220 (1975) [167(1975)] · Zbl 1378.83040
[3] Wald, RM, On particle creation by black holes, Commun. Math. Phys., 45, 9-34 (1975) · doi:10.1007/BF01609863
[4] Hawking, SW, The Large Scale Structure of Space-Time (1973), Cambridge: Cambridge University Press, Cambridge · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[5] Wald, R., General Relativity (2010), Chicago: University of Chicago Press, Chicago · Zbl 0549.53001
[6] Ashtekar, A.; Krishnan, B., Isolated and dynamical horizons and their applications, Living Rev. Rel., 7, 10 (2004) · Zbl 1071.83036 · doi:10.12942/lrr-2004-10
[7] Parikh, MK; Wilczek, F., Hawking radiation as tunneling, Phys. Rev. Lett., 85, 5042-5045 (2000) · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[8] Angheben, M.; Nadalini, M.; Vanzo, L.; Zerbini, S., Hawking radiation as tunneling for extremal and rotating black holes, JHEP, 05, 014 (2005) · doi:10.1088/1126-6708/2005/05/014
[9] Robinson, SP; Wilczek, F., A relationship between Hawking radiation and gravitational anomalies, Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.011303
[10] Chatterjee, B.; Ghosh, A.; Mitra, P., Tunnelling from black holes in the Hamilton Jacobi approach, Phys. Lett. B, 661, 307-311 (2008) · Zbl 1282.83029 · doi:10.1016/j.physletb.2008.02.034
[11] Shankaranarayanan, S.; Padmanabhan, T.; Srinivasan, K., Hawking radiation in different coordinate settings: complex paths approach, Class. Quant. Grav., 19, 2671-2688 (2002) · Zbl 1002.83039 · doi:10.1088/0264-9381/19/10/310
[12] Kerner, R.; Mann, RB, Tunnelling, temperature and Taub-NUT black holes, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.104010
[13] Starobinskiǐ, AA, Amplification of waves during reflection from a rotating “black hole”, Sov. J. Exp. Theor. Phys., 37, 28 (1973)
[14] Matzner, RA, Scattering of massless scalar waves by a Schwarzschild “singularity”, J. Math. Phys., 9, 163-170 (1968) · doi:10.1063/1.1664470
[15] Damour, T.; Ruffini, R., Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism, Phys. Rev. D, 14, 332-334 (1976) · doi:10.1103/PhysRevD.14.332
[16] Sannan, S., Heuristic derivation of the probability distributions of particles emitted by a black hole, Gen. Rel. Grav., 20, 239-246 (1988) · doi:10.1007/BF00759183
[17] Srinivasan, K.; Padmanabhan, T., Particle production and complex path analysis, Phys. Rev. D, 60 (1999) · doi:10.1103/PhysRevD.60.024007
[18] Elizalde, E., Series solutions for the Klein-Gordon equation in Schwarzschild space-time, Phys. Rev. D, 36, 1269-1272 (1987) · doi:10.1103/PhysRevD.36.1269
[19] Akhmedov, ET; Akhmedova, V.; Singleton, D., Hawking temperature in the tunneling picture, Phys. Lett. B, 642, 124-128 (2006) · Zbl 1248.83046 · doi:10.1016/j.physletb.2006.09.028
[20] Landau, LD; Lifshitz, EM, Quantum Mechanics: Non-relativistic Theory (1981), Oxford: Pergamon Press, Oxford · Zbl 0178.57901
[21] Jaffe, RL, Reflection above the barrier as tunneling in momentum space, Am. J. Phys., 78, 620-623 (2010) · doi:10.1119/1.3298428
[22] Birell, ND; Davies, PCW, Quantum Fields in Curved Space (1982), Cambridge: Cambridge University Press, Cambridge · Zbl 0972.81605 · doi:10.1017/CBO9780511622632
[23] Gogberashvili, M., Can quantum particles cross a horizon?, Int. J. Theor. Phys., 58, 11, 3711-3725 (2019) · Zbl 1431.83093 · doi:10.1007/s10773-019-04242-0
[24] Gogberashvili, M.; Pantskhava, L., Black hole information problem and wave bursts, Int. J. Theor. Phys., 57, 6, 1763-1773 (2018) · Zbl 1395.83051 · doi:10.1007/s10773-018-3702-x
[25] Griffiths, D., Introduction of Quantum Mechanics (1995), Hoboken: Prentice Hall, Inc., Hoboken · Zbl 0818.00001
[26] Schwarzschild, K., On the gravitational field of a sphere of incompressible fluid according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1916, 424-434 (1916) · JFM 46.1297.01
[27] Reissner, H.: Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie (1916)
[28] Chandrasekhar, S., The Mathematical Theory of Black Holes (1983), Oxford: Clarendon Press, Oxford University Press, Oxford · Zbl 0511.53076
[29] Hawking, SW; Horowitz, GT; Ross, SF, Entropy, area, and black hole pairs, Phys. Rev. D, 51, 4302-4314 (1995) · doi:10.1103/PhysRevD.51.4302
[30] S. I. E., Abramowitz, M.: Handbook of Mathematical Functions (Without Numerical Tables). NBS, 10 ed. (1972) · Zbl 0543.33001
[31] Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. Release 1.1.4 of 2022-01-15
[32] Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, D., On the LambertW function, Adv. Comput. Math., 5, 329-359 (1996) · Zbl 0863.65008 · doi:10.1007/BF02124750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.