×

Hopf bifurcation in an SEIDQV worm propagation model with quarantine strategy. (English) Zbl 1253.68052

Summary: Worms exploiting zero-day vulnerabilities have drawn significant attention owing to their enormous threats to the Internet. In general, users may immunize their computers with countermeasures in exposed and infectious state, which may take a period of time. Through theoretical analysis, time delay may lead to Hopf bifurcation phenomenon so that the worm propagation system will be unstable and uncontrollable. In view of the above factors, a quarantine strategy is thus proposed in the study. In real network, unknown worms and worm variants may lead to great risks, which misuse detection system fails to detect. However, anomaly detection is of help in detecting these kinds of worm. Consequently, our proposed quarantine strategy is built on the basis of anomaly intrusion detection system. Numerical experiments show that the quarantine strategy can diminish the infectious hosts sharply. In addition, the threshold \(\tau_0\) is much larger after using our quarantine strategy, which implies that people have more time to remove worms so that the system is easier to be stable and controllable without Hopf bifurcation. Finally, simulation results match numerical ones well, which fully supports our analysis.

MSC:

68M11 Internet topics
37N35 Dynamical systems in control
68M10 Network design and communication in computer systems

References:

[1] (1992)
[2] Nature 180 pp 361– (1999)
[3] DOI: 10.1016/j.cnsns.2012.05.030 · Zbl 1261.93012 · doi:10.1016/j.cnsns.2012.05.030
[4] DOI: 10.1016/j.amc.2006.11.012 · Zbl 1118.68014 · doi:10.1016/j.amc.2006.11.012
[5] DOI: 10.1016/j.amc.2006.09.062 · Zbl 1120.68041 · doi:10.1016/j.amc.2006.09.062
[6] DOI: 10.1016/j.amc.2007.02.004 · Zbl 1117.92052 · doi:10.1016/j.amc.2007.02.004
[7] DOI: 10.1016/j.amc.2011.03.041 · Zbl 1219.68080 · doi:10.1016/j.amc.2011.03.041
[8] DOI: 10.1016/j.nonrwa.2010.05.018 · Zbl 1203.94148 · doi:10.1016/j.nonrwa.2010.05.018
[9] DOI: 10.1155/2012/841987 · Zbl 1237.37067 · doi:10.1155/2012/841987
[10] DOI: 10.1016/j.nonrwa.2011.07.048 · Zbl 1238.34076 · doi:10.1016/j.nonrwa.2011.07.048
[11] DOI: 10.1155/2012/693695 · Zbl 1248.68077 · doi:10.1155/2012/693695
[12] DOI: 10.1155/2012/106950 · Zbl 1248.68074 · doi:10.1155/2012/106950
[13] DOI: 10.1016/j.apm.2009.06.011 · Zbl 1185.68042 · doi:10.1016/j.apm.2009.06.011
[14] DOI: 10.1016/j.mcm.2011.06.044 · Zbl 1286.92049 · doi:10.1016/j.mcm.2011.06.044
[15] DOI: 10.1016/j.compeleceng.2011.07.009 · doi:10.1016/j.compeleceng.2011.07.009
[16] DOI: 10.1016/j.cose.2009.10.002 · doi:10.1016/j.cose.2009.10.002
[17] DOI: 10.1016/j.amc.2007.09.045 · Zbl 1134.92034 · doi:10.1016/j.amc.2007.09.045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.