×

A stochastic dynamical model for nosocomial infections with co-circulation of sensitive and resistant bacterial strains. (English) Zbl 1524.92118

Summary: Nosocomial infections (hospital-acquired) has been an important public health problem, which may make those patients with infections or involved visitors and hospital personnel at higher risk of worse clinical outcomes or infection, and then consume more healthcare resources. Taking into account the stochasticity of the death and discharge rate of patients staying in hospitals, in this paper, we propose a stochastic dynamical model describing the transmission of nosocomial pathogens among patients admitted for hospital stays. The stochastic terms of the model are incorporated to capture the randomness arising from death and discharge processes of patients. Firstly, a sufficient condition is established for the stochastic extinction of disease. It shows that introducing randomness in the model will result in lower potential of nosocomial outbreaks. Further, we establish a threshold criterion on the existence of stationary distribution and ergodicity for any positive solution of the model. Particularly, the spectral radius form of stochastic threshold value is calculated in the special case. Moreover, the numerical simulations are conducted to both validate the theoretical results and investigate the effect of prevention and control strategies on the prevalence of nosocomial infection. We show that enhancing hygiene, targeting colonized and infected patients, improving antibiotic treatment accuracy, shortening treatment periods are all crucial factors to contain nosocomial infections.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
60H30 Applications of stochastic analysis (to PDEs, etc.)
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI

References:

[1] Allen, LJS, An introduction to stochastic epidemic models. Mathematical epidemiology, 81-130 (2008), Berlin: Springer, Berlin · Zbl 1206.92022
[2] Allen, E., Environmental variability and mean-reverting processes, Discrete Contin Dyn Syst Ser B, 21, 7, 2073-2089 (2016) · Zbl 1347.60066 · doi:10.3934/dcdsb.2016037
[3] Austin, DJ; Bonten, MJM; Weinstein, RA, Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs, P Natl Acad Sci USA, 96, 6908-6913 (1999) · doi:10.1073/pnas.96.12.6908
[4] Bailey, NTJ, Some stochastic models for small epidemics in large populations, J R Stat Soc Ser C Appl Stat, 13, 1, 9-19 (1964) · Zbl 0134.38002
[5] Berman, A.; Plemmons, RJ, Nonnegative matrices in the mathematical sciences (1979), New York: Academic Press, New York · Zbl 0484.15016
[6] Bonhoeffer, S.; Lipsitch, M.; Levin, BR, Evaluating treatment protocols to prevent antibiotic resistance, Proc Natl Acad Sci USA, 94, 22, 12106-12111 (1997) · doi:10.1073/pnas.94.22.12106
[7] Browne, C.; Wang, M.; Webb, GF, A stochastic model of nosocomial epidemics in hospital intensive care units, Electron J Qual Theor, 6, 1-12 (2017) · Zbl 1413.92037
[8] Cen, X.; Feng, Z.; Zheng, Y.; Zhao, Y., Bifurcation analysis and global dynamics of a mathematical model of antibiotic resistance in hospitals, J Math Biol, 75, 1463-1485 (2017) · Zbl 1378.92028 · doi:10.1007/s00285-017-1128-3
[9] Cooper, BS; Medley, GF; Stone, SP, Methicillin-resistant Staphylococcus aureus in hospitals and the community: Stealth dynamics and control catastrophes, Proc Natl Acad Sci USA, 101, 10223-10228 (2004) · doi:10.1073/pnas.0401324101
[10] D’Agata, EMC; Webb, G.; Horn, M., A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci, J Infect Dis, 11, 2004-2011 (2005) · doi:10.1086/498041
[11] Driessche, PVD; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[12] Feng, X.; Liu, L.; Tang, S.; Huo, X., Stability and bifurcation analysis of a two-patch SIS model on nosocomial infections, Appl Math Lett, 102 (2019) · Zbl 1444.92112 · doi:10.1016/j.aml.2019.106097
[13] Fu, X., On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model, Physica A, 523, 1008-1023 (2019) · Zbl 07563436 · doi:10.1016/j.physa.2019.04.181
[14] Hughes, J.; Huo, X.; Falk, L., Benefits and unintended consequences of antimicrobial de-escalation: implications for stewardship programs, PLoS One, 12, 2 (2017) · doi:10.1371/journal.pone.0171218
[15] Higham, DJ, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev, 43, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302
[16] Hurford, A.; Morris, AM; Fisman, DN; Wu, J., Linking antimicrobial prescribing to antimicrobial resistance in the ICU: before and after an antimicrobial stewardship program, Epidemics, 4, 4, 203-210 (2012) · doi:10.1016/j.epidem.2012.12.001
[17] Ikeda, N.; Watanabe, S., A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J Math, 14, 3, 619-633 (1977) · Zbl 0376.60065
[18] Iman, RL; Helton, JC; Campbell, JE, An approach to sensitivity analysis of computer models: I-introduction, input variable selection and preliminary variable assessment, J Qual Technol, 13, 3, 174-183 (1981) · doi:10.1080/00224065.1981.11978748
[19] Juan, C.; Gutiérrez, O.; Oliver, A., Contribution of clonal dissemination and selection of mutants during therapy to pseudomonas aeruginosa antimicrobial resistance in an intensive care unit setting, Clin Microbiol Infect, 11, 11, 887-892 (2005) · doi:10.1111/j.1469-0691.2005.01251.x
[20] Khasminskii, R., Stochastic stability of differential equations (2011), Berlin: Springer, Berlin · Zbl 0855.93090
[21] Kutoyants, YA, Statistical inference for ergodic diffusion processes (2004), London: Springer, London · Zbl 1038.62073 · doi:10.1007/978-1-4471-3866-2
[22] Lan, G.; Yuan, S.; Song, B., The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, J Frankl Inst, 358, 4, 2405-2433 (2021) · Zbl 1459.92133 · doi:10.1016/j.jfranklin.2021.01.015
[23] Mao, X., Stochastic differential equations and applications (2008), Chichester: Horwood, Chichester · doi:10.1533/9780857099402
[24] Marino, S.; Hogue, IB; Ray, CJ; Kirschner, DE, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol, 254, 178-196 (2008) · Zbl 1400.92013 · doi:10.1016/j.jtbi.2008.04.011
[25] Mccluskey, CC, Lyapunov functions for tuberculosis models with fast and slow progression, Math Biosci Eng, 3, 4, 603-614 (2006) · Zbl 1113.92057 · doi:10.3934/mbe.2006.3.603
[26] Melsen, WG; Rovers, MM; Groenwold, RH, Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies, Lancet Infect Dis, 13, 8, 665-671 (2013) · doi:10.1016/S1473-3099(13)70081-1
[27] Monk, NAM, Oscillatory expression of Hes1, p53, and NF-\( \kappa B\) driven by transcriptional time delays, Curr Biol, 13, 16, 1409-1413 (2003) · doi:10.1016/S0960-9822(03)00494-9
[28] Schumacher, M.; Allignol, A.; Beyersmann, J., Hospital-acquired infections-appropriate statistical treatment is urgently needed!, Int J Epidemiol, 42, 5, 1502-1508 (2013) · doi:10.1093/ije/dyt111
[29] Smith, DL; Dushoff, J.; Perencevich, EN, Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem, Proc Natl Acad Sci USA, 101, 10, 3709-3714 (2004) · doi:10.1073/pnas.0400456101
[30] Stenehjem, E.; Hersh, AL; Sheng, X., Antibiotic use in small community hospitals, Clin Infect Dis, 63, 10, 1273-1280 (2016) · doi:10.1093/cid/ciw588
[31] Sun, C.; Hsieh, YH, Global analysis of an SEIR model with varying population size and vaccination, Appl Math Model, 34, 2685-2697 (2010) · Zbl 1201.34076 · doi:10.1016/j.apm.2009.12.005
[32] Wang, Y.; Jiang, D.; Alsaedi, A.; Hayat, T., Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function, Physica A, 501, 276-292 (2018) · Zbl 1514.92063 · doi:10.1016/j.physa.2018.02.040
[33] Wang, L.; Wang, K.; Feng, X., The effect of stochastic variability on transmission dynamics of echinococcosis, J Biol Syst, 29, 4, 895-926 (2021) · Zbl 1482.92113 · doi:10.1142/S0218339021500224
[34] Wolkewitz, M.; Cooper, BS; Palomar-Martinez, M., Multilevel competing risk models to evaluate the risk of nosocomial infection, Crit Care, 18, 2, 1-11 (2014) · doi:10.1186/cc13821
[35] World Health Organization (2006) Clean hands leading to safer health care for half the world’s population. https://www.who.int/news/item /10-11-2006-clean-hands-leading -to-safer-health-care-for-half -the-world-s-population. Accessed 10 Nov 2022
[36] World Health Organization (2022) Report signals increasing resistance to antibiotics in bacterial infections in humans and need for better data. https://www.who.int/news/item/ 09-12-2022-report-signals-increasing-resistance -to-antibiotics-in-bacterial-infections -in-humans-and-need-for-better-data. Accessed 20 Dec 2022
[37] Xu, L.; Suo, J.; Zhou, J.; Hu, H., Boundedness analysis of neutral stochastic differential systems with mixed delays, Appl Math Lett, 122 (2021) · Zbl 1480.34106 · doi:10.1016/j.aml.2021.107545
[38] Zhu, C.; Yin, G., Asymptotic properties of hybrid diffusion systems, SIAM J Control Optim, 46, 1155-1179 (2007) · Zbl 1140.93045 · doi:10.1137/060649343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.