×

Multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces. (English) Zbl 1390.35076

Summary: In this paper, we investigate the following nonlinear and non-homogeneous elliptic system \[ \begin{cases} -\operatorname{div}(a_1(|\nabla u|) \nabla u) = \lambda_1 F_u(x,u,v) - \lambda_2 G_u(x,u,v) - \lambda_3 H_u(x,u,v)\quad &\text{in}\; \Omega, \\ -\operatorname{div}(a_2(|\nabla v|) \nabla v) = \lambda_1 F_v(x,u,v) - \lambda_2 G_v(x,u,v) - \lambda_3 H_v(x,u,v) &\text{in}\; \Omega, \\ u = v = 0 &\text{on}\; \partial\Omega, \end{cases} \] where \(\Omega\) is a bounded domain in \(\mathbb{R}^N(N \geq 1)\) with smooth boundary \(\partial \Omega\), \(\lambda_1\), \(\lambda_2\), \(\lambda_3\) are three parameters, \(\phi_i(t) = a_i(|t|)t\) (\(i = 1,2\)) are two increasing homeomorphisms from \(\mathbb{R}\) onto \(\mathbb{R}\), and functions \(F\), \(G\), \(H\) are of class \(C^1(\Omega \times \mathbb{R}^2, \mathbb{R})\) and satisfy some reasonable growth conditions. By using a three critical points theorem due to B. Ricceri, we obtain that system has at least three solutions. With some additional conditions, by using a four critical points theorem due to G. Anello, we obtain that system has at least four solutions.

MSC:

35J47 Second-order elliptic systems
35J62 Quasilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations

References:

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics (Amsterdam) 140, Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[2] C. O. Alves, G. M. Figueiredo and J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal. 44 (2014), no. 2, 435-456. · Zbl 1365.35038 · doi:10.12775/tmna.2014.055
[3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), no. 4, 349-381. · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[4] G. Anello, Multiple nonnegative solutions for an elliptic boundary value problem involving combined nonlinearities, Math. Comput. Modelling 52 (2010), no. 1-2, 400-408. · Zbl 1201.35101 · doi:10.1016/j.mcm.2010.03.011
[5] —-, On the multiplicity of critical points for parameterized functionals on reflexive Banach spaces, Studia Math. 213 (2012), no. 1, 49-60. · Zbl 1282.47077 · doi:10.4064/sm213-1-4
[6] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003), no. 4, 651-665. · Zbl 1031.49006 · doi:10.1016/s0362-546x(03)00092-0
[7] G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), no. 1, 1-10. · Zbl 1194.58008 · doi:10.1080/00036810903397438
[8] G. Bonanno, G. Molica Bisci and V. Rădulescu, Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. 74 (2011), no. 14, 4785-4795. · Zbl 1220.35043 · doi:10.1016/j.na.2011.04.049
[9] —-, Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces, Nonlinear Anal. 75 (2012), no. 12, 4441-4456. · Zbl 1246.35138 · doi:10.1016/j.na.2011.12.016
[10] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[11] F. Cammaroto and L. Vilasi, Multiple solutions for a nonhomogeneous Dirichlet problem in Orlicz-Sobolev spaces, Appl. Math. Comput. 218 (2012), no. 23, 11518-11527. · Zbl 1282.35146 · doi:10.1016/j.amc.2012.05.039
[12] N. T. Chung, Three solutions for a class of nonlocal problems in Orlicz-Sobolev spaces, J. Korean Math. Soc. 50 (2013), no. 6, 1257-1269. · Zbl 1282.35164 · doi:10.4134/jkms.2013.50.6.1257
[13] N. T. Chung and H. Q. Toan, On a nonlinear and non-homogeneous problem without (A-R) type condition in Orlicz-Sobolev spaces, Appl. Math. Comput. 219 (2013), no. 14, 7820-7829. · Zbl 1309.35014 · doi:10.1016/j.amc.2013.02.011
[14] Ph. Clément, M. García-Huidobro, R. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (2000), no. 1, 33-62. · Zbl 0959.35057 · doi:10.1007/s005260050002
[15] F. Colasuonno, P. Pucci and C. Varga, Multiple solutions for an eigenvalue problem involving \(p\)-Laplacian type operators, Nonlinear Anal. 75 (2012), no. 12, 4496-4512. · Zbl 1251.35059 · doi:10.1016/j.na.2011.09.048
[16] P. De Nápoli and M. C. Mariani, Mountain pass solutions to equations of \(p\)-Laplacian type, Nonlinear Anal. 54 (2003), no. 7, 1205-1219. · Zbl 1274.35114 · doi:10.1016/s0362-546x(03)00105-6
[17] G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with \(p\)-Laplacian, Port. Math. (N.S.) 58 (2001), no. 3, 339-378. · Zbl 0991.35023
[18] N. Fukagai, M. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on \(\mb{R}^N \), Funkcial. Ekcac. 49 (2006), no. 2, 235-267. · Zbl 1387.35405 · doi:10.1619/fesi.49.235
[19] N. Fukagai and K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. Mat. Pura Appl. (4) 186 (2007), no. 3, 539-564. · Zbl 1223.35132 · doi:10.1007/s10231-006-0018-x
[20] M. García-Huidobro, V. K. Le, R. Manásevich and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 207-225. · Zbl 0936.35067 · doi:10.1007/s000300050073
[21] J.-P. Gossez, Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems, in Nonlinear Analysis, Function Spaces and Applications (Proc. Spring School, Horni Bradlo, 1978), 59-94, Teubner, Leipzig, 1979. · Zbl 0417.46033
[22] J. Huentutripay and R. Manásevich, Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz-Sobolev spaces, J. Dynam. Differential Equations 18 (2006), no. 4, 901-929. · Zbl 1198.35082 · doi:10.1007/s10884-006-9049-7
[23] Q. Jiu and J. Su, Existence and multiplicity results for Dirichlet problems with \(p\)-Laplacian, J. Math. Anal. Appl. 281 (2003), no. 2, 587-601. · Zbl 1146.35358 · doi:10.1016/s0022-247x(03)00165-3
[24] S. Liu, Existence of solutions to a superlinear \(p\)-Laplacian equation, Electron. J. Differential Equations 2001 (2001), no. 66, 1-6. · Zbl 1011.35062
[25] M. Mihăilescu and V. Rădulescu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J. Math. Anal. Appl. 330 (2007), no. 1, 416-432. · Zbl 1176.35071 · doi:10.1016/j.jmaa.2006.07.082
[26] M. Mihăilescu and D. Repovš, Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz-Sobolev spaces, Appl. Math. Comput. 217 (2011), no. 14, 6624-6632. · Zbl 1211.35117 · doi:10.1016/j.amc.2011.01.050
[27] M. M. Rao and Z. D. Ren, Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 250, Marcel Dekker, New York, 2002. · Zbl 0997.46027 · doi:10.1201/9780203910863
[28] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), no. 3, 220-226. · Zbl 0979.35040 · doi:10.1007/s000130050496
[29] —-, A further three critical points theorem, Nonlinear Anal. 71 (2009), no. 9, 4151-4157. · Zbl 1187.47057 · doi:10.1016/j.na.2009.02.074
[30] —-, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), no. 18, 7446-7454. · Zbl 1228.58009 · doi:10.1016/j.na.2011.07.064
[31] L. Wang, X. Zhang and H. Fang, Existence and multiplicity of solutions for a class of \((ϕ_1,ϕ_2)\)-Laplacian elliptic system in \(\mb{R}^N\) via genus theory, Comput. Math. Appl. 72 (2016), no. 1, 110-130. · Zbl 1443.35035 · doi:10.1016/j.camwa.2016.04.034
[32] F. Xia and G. Wang, Existence of solution for a class of elliptic systems, Journal of Hunan Agricultural University (Natural Sciences) 33 (2007), no. 3, 362-366. · doi:10.13331/j.cnki.jhau.2007.03.028
[33] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990. · Zbl 0684.47029 · doi:10.1007/978-1-4612-0981-2
[34] Z. Zhang, Existence of positive radial solutions for quasilinear elliptic equations and systems, Electron. J. Differential Equations 2016 (2016), no. 50, 9 pp. · Zbl 1335.35068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.