×

Free vibration analysis of a fluid-filled functionally graded spherical shell subjected to internal pressure. (English) Zbl 1498.74026

Summary: An analytical solution is developed to study the free vibration of a thin functionally graded (FG) spherical shell under initial internal static pressure based on Love’s first approximation theory. A coupled vibro-acoustic analytical model is presented for spherical shells filled with compressible nonviscous fluid. The non-homogenous material properties are assumed to be graded according to a power-law distribution of the constituents through the shell thickness. By introducing a stress function, the reformulated coupled equations of motion of FG spherical shells under the influence of initial stresses are obtained. The wave equation is used to model the internal acoustic domain. The boundary conditions of continuity of fluid and shell velocities, as well as the normal pressure acting on the internal surface of the shell from the fluid are imposed. The frequency equation of the coupled system is obtained utilizing modal expansion along with the orthogonality properties of the mode shapes. Exact solutions for the free vibration of pressurized empty and fluid-filled shells are obtained in terms of products of trigonometric and Legendre functions in a spherical coordinate system. Numerical results are validated with the results of simple cases available in the literature as well as finite element modeling. Effects of different parameters including material constants, geometry, initial pressure and vibro-acoustic coupling on natural frequencies are studied. The presented analytical solution is an attempt to describe the vibrational behavior of FG pressurized fluid-filled spherical shells.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74E05 Inhomogeneity in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
76Q05 Hydro- and aero-acoustics

Software:

ABAQUS
Full Text: DOI

References:

[1] Kraus, H., Thin elastic shells: an introduction to the theoretical foundations and the analysis of their static and dynamic behavior (1967), New York: Wiley, New York · Zbl 0266.73052
[2] Leissa, A.W.: Vibration of shells. NASA SP-288, Washington, DC.: U.S. Government Printing Office (1973)
[3] Piacsek, AA; Abdul-Wahid, S.; Taylor, R., Resonance frequencies of a spherical aluminum shell subject to static internal pressure, J. Acoust. Soc. Am., 131, 506-512 (2012) · doi:10.1121/1.4721647
[4] Eslaminejad, A., Ziejewski, M., Karami, G.: Vibrational properties of a hemispherical shell with its inner fluid pressure: an inverse method for noninvasive intracranial pressure monitoring. J. Vib. Acoust. 141 (2019)
[5] Akkas, N., Dynamic analysis of a fluid-filled spherical sandwich shell—a model of the human head, J. Biomech., 8, 275-284 (1975) · doi:10.1016/0021-9290(75)90079-2
[6] Stevanovic, M.; Wodicka, GR; Bourland, JD; Graber, GP; Foster, KS; Lantz, GC; Tacker, WA; Cymerman, A., The effect of elevated intracranial pressure on the vibrational response of the ovine head, Ann. Biomed. Eng., 23, 720-727 (1995) · doi:10.1007/BF02584471
[7] Coquart, L.; Depeursinge, C.; Curnier, A.; Ohayon, R., A fluid-structure interaction problem in biomechanics: prestressed vibrations of the eye by the finite element method, J. Biomech., 25, 1105-1118 (1992) · doi:10.1016/0021-9290(92)90067-B
[8] Salimi, S.; Simon Park, S.; Freiheit, T., Dynamic response of intraocular pressure and biomechanical effects of the eye considering fluid-structure interaction, J. Biomech. Eng., 133 (2011) · doi:10.1115/1.4005166
[9] Strutt, JW, On the vibrations of a gas contained within a rigid spherical envelope, Proc. London Math. Soc., 1, 93-113 (1871) · JFM 04.0571.01 · doi:10.1112/plms/s1-4.1.93
[10] Lamb, H., On the vibrations of a spherical shell, Proc. London Math. Soc., 1, 50-56 (1882) · JFM 15.0893.01 · doi:10.1112/plms/s1-14.1.50
[11] Love, AEH, The free and forced vibrations of an elastic spherical shell containing a given mass of liquid, Proc. London Math. Soc., 1, 170-207 (1887) · JFM 20.1074.01 · doi:10.1112/plms/s1-19.1.170
[12] Morse, PM; Feshbach, H., Methods of Theoretical Physics (1953), New York: Part II. McGraw-Hill Book Company, New York · Zbl 0051.40603
[13] Rand, R.; DiMaggio, F., Vibrations of fluid-filled spherical and spheroidal shells, J. Acoust. Soc. Am., 42, 1278-1286 (1967) · Zbl 0161.44304 · doi:10.1121/1.1910717
[14] Engin, AE; Liu, YK, Axisymmetric response of a fluid-filled spherical shell in free vibrations, J. Biomech., 3, 11-16 (1970) · doi:10.1016/0021-9290(70)90047-3
[15] Kenner, VH; Goldsmith, W., Dynamic loading of a fluid-filled spherical shell, Int. J. Mech. Sci., 14, 557-568 (1972) · doi:10.1016/0020-7403(72)90056-2
[16] Su, TC, The effect of viscosity on free oscillations of fluid-filled spherical shells, J. Sound Vib., 74, 205-220 (1981) · Zbl 0457.73035 · doi:10.1016/0022-460X(81)90504-6
[17] Zhang, P.; Geers, TL, Excitation of a fluid-filled, submerged spherical shell by a transient acoustic wave, J. Acoust. Soc. Am., 93, 696-705 (1993) · doi:10.1121/1.405433
[18] Chen, WQ; Ding, HJ, Natural frequencies of a fluid-filled anisotropic spherical shell, J. Acoust. Soc. Am., 105, 174-182 (1999) · doi:10.1121/1.424578
[19] Chen, WQ; Wang, X.; Ding, HJ, Free vibration of a fluid-filled hollow sphere of a functionally graded material with spherical isotropy, J. Acoust. Soc. Am., 106, 2588-2594 (1999) · doi:10.1121/1.428090
[20] Hu, J.; Qiu, Z.; Su, TC, Axisymmetric vibrations of a viscous-fluid-filled piezoelectric spherical shell and the associated radiation of sound, J. Sound Vib., 330, 5982-6005 (2011) · doi:10.1016/j.jsv.2011.07.030
[21] Fazelzadeh, SA; Ghavanloo, E., Coupled axisymmetric vibration of nonlocal fluid-filled closed spherical membrane shell, Acta Mech., 223, 2011-2020 (2012) · Zbl 1356.74086 · doi:10.1007/s00707-012-0692-2
[22] El Baroudi, A.; Razafimahery, F.; Rakotomanana-Ravelonarivo, L., Study of a spherical head model. Analytical and numerical solutions in fluid-structure interaction approach, Int. J. Eng. Sci., 51, 1-13 (2012) · Zbl 1423.74269 · doi:10.1016/j.ijengsci.2011.11.007
[23] Tamadapu, G.; Nordmark, A.; Eriksson, A., Resonances of a submerged fluid-filled spherically isotropic microsphere with partial-slip interface condition, J. Appl. Phys., 118 (2015) · doi:10.1063/1.4926783
[24] Kuo, KA; Hunt, HEM; Lister, JR, Small oscillations of a pressurized, elastic, spherical shell: model and experiments, J. Sound Vib., 359, 168-178 (2015) · doi:10.1016/j.jsv.2015.08.021
[25] Ventsel, E.; Krauthammer, T., Thin plates and shells: theory, analysis, and applications (2001), New York: Marcel Dekker, New York · doi:10.1201/9780203908723
[26] Gol’Denveize, AL, Theory of elastic thin shells (1961), New York: Pergamon Press, New York
[27] Vlasov, V.Z.: General theory of shells and its application in engineering. NASA TT F-99, Washington (1964)
[28] Fallah, F.; Taati, E.; Asghari, M., Decoupled stability equation for buckling analysis of FG and multilayered cylindrical shells based on the first-order shear deformation theory, Compos. B. Eng., 154, 225-241 (2018) · doi:10.1016/j.compositesb.2018.07.051
[29] Karimi, MH; Fallah, F., Analytical nonlinear analysis of functionally graded sandwich solid/annular sector plates, Compos. Struct., 275 (2021) · doi:10.1016/j.compstruct.2021.114420
[30] Irschik, H.: On vibrations of layered beams and plates. J. Appl. Math. Mech. (ZAMM) 73, 34 (1993) · Zbl 0798.73032
[31] Taati, E., Borjalilou, V., Fallah, F., Ahmadian, M.T.: On size-dependent nonlinear free vibration of carbon nanotube reinforced beams based on the nonlocal elasticity theory. Mech. Based Des. Struct. Mach. 1-23 (2020).
[32] Soedel, W., Vibrations of shells and plates (2004), Cambridge: CRC Press, Cambridge · Zbl 1080.74002 · doi:10.4324/9780203026304
[33] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs and mathematical tables. US Government printing office (1964) · Zbl 0171.38503
[34] Morse, PM; Ingard, KU, Theoretical acoustics (1986), Oxford: Princeton University Press, Oxford
[35] ABAQUS 6.9 [Computer software]. Providence, RI, Dassault Systèmes Simulia (2009).
[36] Yıldırım, V., Exact radial free vibration frequencies of power-law graded spheres, J. Appl. Comput. Mech., 4, 175-186 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.