×

Electrostatics in a tortuous nanochannel in a newly developed curvilinear coordinate system. (English) Zbl 07851685

Summary: Although nanochannels in tortuous shape exhibit unusual transportational characteristics, the traditional theoretical analysis of nanofluidics in such kinds of systems remains challenging, partly due to their complicated boundary description. In this paper, by developing a curvilinear coordinate system for such tortuous nanochannels, we solve the electrostatic Poisson-Boltzmann equation analytically for a two-dimensional nanochannel, with its effectiveness confirmed through numerical calculation. The influences of the geometric profile on the distribution of electric potential, ionic concentration, and surface charge on channel walls are quantitatively evaluated in a facilitated way in terms of the curvilinear coordinates introduced. Such a technique can be widely applied to many nanofluidic systems in curved channels.

MSC:

78-XX Optics, electromagnetic theory
76-XX Fluid mechanics

References:

[1] Duan, C.; Majumdar, A., Anomalous ion transport in 2-nm hydrophilic nanochannels, Nature Nanotechnology, 5, 12, 848-852, 2010
[2] Hou, X.; Guo, W.; Jiang, L., Biomimetic smart nanopores and nanochannels, Chem. Soc. Rev., 40, 5, 2385-2401, 2011
[3] Geng, J.; Kim, K.; Zhang, J.; Escalada, A.; Tunuguntla, R.; Comolli, L. R.; Allen, F. I.; Shnyrova, A. V.; Cho, K. R.; Munoz, D., Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes, Nature, 514, 7524, 612-615, 2014
[4] Hunter, R. J., Foundations of Colloid Science, 2001, Oxford University Press
[5] Schoch, R. B.; Han, J.; Renaud, P., Transport phenomena in nanofluidics, Rev. Modern Phys., 80, 3, 839, 2008
[6] Berg, J. C., An Introduction to Interfaces & Colloids: The Bridge to Nanoscience, 2010, World Scientific
[7] Gouy, M., Sur la constitution de la charge électrique à la surface d’un électrolyte, J. Phys. Theor. Appl., 9, 1, 457-468, 1910 · JFM 41.0957.01
[8] Chapman, D. L., LI. A contribution to the theory of electrocapillarity, Lond. Edinb. Dublin Philos. Mag. J. Sci., 25, 148, 475-481, 1913 · JFM 44.0918.01
[9] Hunter, R. J., Zeta Potential in Colloid Science: Principles and Applications, 2013, Academic Press
[10] Rice, C. L.; Whitehead, R., Electrokinetic flow in a narrow cylindrical capillary, J. Phys. Chem., 69, 11, 4017-4024, 1965
[11] Ohshima, H.; Healy, T. W.; White, L. R., Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle, J. Colloid Interface Sci., 90, 1, 17-26, 1982
[12] Ohshima, H., Approximate expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical or cylindrical colloidal particle based on the modified Poisson-Boltzmann equation, Colloid Polym. Sci., 296, 4, 647-652, 2018
[13] Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic selectivity of single nanochannels, Nano Lett., 8, 7, 1978-1985, 2008
[14] Vlassiouk, I.; Smirnov, S.; Siwy, Z., Nanofluidic ionic diodes. Comparison of analytical and numerical solutions, ACS Nano, 2, 8, 1589-1602, 2008
[15] Movahed, S.; Li, D., Electrokinetic transport through nanochannels, Electrophoresis, 32, 11, 1259-1267, 2011
[16] Constantin, D.; Siwy, Z. S., Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode, Phys. Rev. E, 76, 4, Article 041202 pp., 2007
[17] Green, Y.; Edri, Y.; Yossifon, G., Asymmetry-induced electric current rectification in permselective systems, Phys. Rev. E, 92, 3, Article 033018 pp., 2015
[18] Green, Y., Current-voltage response for unipolar funnel-shaped nanochannel diodes, Phys. Rev. E, 98, 3, Article 033114 pp., 2018
[19] Rustom, A.; Saffrich, R.; Markovic, I.; Walther, P.; Gerdes, H.-H., Nanotubular highways for intercellular organelle transport, Science, 303, 5660, 1007-1010, 2004
[20] Sherer, N. M.; Lehmann, M. J.; Jimenez-Soto, L. F.; Horensavitz, C.; Pypaert, M.; Mothes, W., Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission, Nat. Cell Biol., 9, 3, 310-315, 2007
[21] Wang, M.; Meng, H.; Wang, D.; Yin, Y.; Stroeve, P.; Zhang, Y.; Sheng, Z.; Chen, B.; Zhan, K.; Hou, X., Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch, Adv. Mater., 31, 11, Article 1805130 pp., 2019
[22] Wang, M.; Hou, Y.; Yu, L.; Hou, X., Anomalies of ionic/molecular transport in nano and sub-nano confinement, Nano Lett., 20, 10, 6937-6946, 2020
[23] Liu, M.-L.; Huang, M.; Tian, L.-Y.; Zhao, L.-H.; Ding, B.; Kong, D.-B.; Yang, Q.-H.; Shao, J.-J., Two-dimensional nanochannel arrays based on flexible montmorillonite membranes, ACS Appl. Mater. Interfaces, 10, 51, 44915-44923, 2018
[24] Koltonow, A. R.; Huang, J., Two-dimensional nanofluidics, Science, 351, 6280, 1395-1396, 2016
[25] Cheng, C.; Jiang, G.; Garvey, C. J.; Wang, Y.; Simon, G. P.; Liu, J. Z.; Li, D., Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing, Sci. Adv., 2, 2, Article e1501272 pp., 2016
[26] Yun, J. H.; Chun, M.-S.; Jung, H. W., The geometry effect on steady electrokinetic flows in curved rectangular microchannels, Phys. Fluids, 22, 5, Article 052004 pp., 2010 · Zbl 1190.76136
[27] Chun, M.-S., Electrokinetic secondary-flow behavior in a curved microchannel under dissimilar surface conditions, Phys. Rev. E, 83, 3, Article 036312 pp., 2011
[28] Struik, D. J., Lectures on Classical Differential Geometry, 1961, Courier Corporation · Zbl 0105.14707
[29] Ricca, R. L., Inflexional disequilibrium of magnetic flux-tubes, Fluid Dyn. Res., 36, 4-6, 319, 2005 · Zbl 1153.76448
[30] Garcia de Andrade, L., Riemannian geometry of twisted magnetic flux tubes in almost helical plasma flows, Phys. Plasmas, 13, 2, Article 022309 pp., 2006
[31] Kilic, M. S.; Bazant, M. Z.; Ajdari, A., Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging, Phys. Rev. E, 75, 2, Article 021502 pp., 2007
[32] Kilic, M. S.; Bazant, M. Z.; Ajdari, A., Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations, Phys. Rev. E, 75, 2, Article 021503 pp., 2007
[33] Stein, D.; Kruithof, M.; Dekker, C., Surface-charge-governed ion transport in nanofluidic channels, Phys. Rev. Lett., 93, 3, Article 035901 pp., 2004
[34] Tunuguntla, R. H.; Henley, R. Y.; Yao, Y.-C.; Pham, T. A.; Wanunu, M.; Noy, A., Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, 357, 6353, 792-796, 2017
[35] Kim, S. J.; Wang, Y.-C.; Lee, J. H.; Jang, H.; Han, J., Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel, Phys. Rev. Lett., 99, 4, Article 044501 pp., 2007
[36] Siria, A.; Poncharal, P.; Biance, A.-L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494, 7438, 455-458, 2013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.