×

An implicit stabilized node-based smoothed finite element method for ultimate bearing capacity analysis of strip footing. (English) Zbl 07855291

MSC:

74-XX Mechanics of deformable solids
76-XX Fluid mechanics
Full Text: DOI

References:

[1] Potts, D. M., Numerical analysis: a virtual dream or practical reality?. Geotechnique, 6, 535-573 (2003)
[2] Bathe, K. J., Finite element method (2008), Wiley Encyclopedia of Computer Science and Engineering
[3] Zeng, W.; Liu, G. R., Smoothed Finite Element Methods (S-FEM): an overview and recent developments. Arch Computat Methods Eng, 2, 397-435 (2018) · Zbl 1398.65312
[4] Liu, G. R., The smoothed finite element method (S-FEM): a framework for the design of numerical models for desired solutions. Front Struct Civ Eng, 2, 456-477 (2019)
[5] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems. Comput Mech, 6, 859-877 (2007) · Zbl 1169.74047
[6] Liu, G. R.; Chen, L.; Nguyen, T. T.; Zeng, K. Y.; Zhang, G. Y., A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems. Int J Numer Methods Eng, 1466-1497 (2010) · Zbl 1202.74179
[7] Liu, G. R.; Nguyen, T. T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static and dynamic problems of solid mechanics. J Sound Vib, 1100-1130 (2009)
[8] Onishi, Y.; Iida, R.; Amaya, K., F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids. Int J Numer Methods Eng, 11, 1582-1606 (2017) · Zbl 1380.65386
[9] Jiang, C.; Liu, G. R.; Han, X.; Zhang, Z. Q.; Zeng, W., A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit ventricles in diastole. Int J Numer Method Biomed Eng, e02697 (2015)
[10] Jiang, C.; Zhang, Z. Q.; Liu, G. R.; Han, X.; Zeng, W., An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues. Eng Anal Bound Elem, 62-77 (2015) · Zbl 1403.74111
[11] Nguyen-Thoi, T.; Vu-Do, H. C.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput Methods Appl Mech Eng, 45-48, 3005-3027 (2010) · Zbl 1231.74432
[12] Yuan, W. H.; Wang, B.; Zhang, W.; Jiang, Q.; Feng, X. T., Development of an explicit smoothed particle finite element method for geotechnical applications. Comput Geotech, 42-51 (2019)
[13] Zhang, W.; Yuan, W.; Dai, B., Smoothed particle finite-element method for large-deformation problems in geomechanics. Int J Geomech, 4, 1-12 (2018)
[14] Lyu, Y. N.; Chen, X.; Tang, J. B.; Cui, L. S.; Liu, Z. Q., Application assessment of hybrid smoothed finite element method for geotechnical deformation and stability analysis. J. Cent. South Univ, 919-933 (2023)
[15] Li, Y.; Liu, G. R., A novel node-based smoothed finite element method with linear strain fields for static, free and forced vibration analyses of solids. Appl Math Comput, 11472184, 30-58 (2019) · Zbl 1428.74211
[16] Feng, H.; Cui, X. Y.; Li, G. Y., A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics. Eng Anal Bound Elem, 78-92 (2016) · Zbl 1403.65069
[17] Fries, T.; Belytschko, T., Convergence and stabilization of stress-point integration in mesh-free and particle methods. Int J Numer Methods Eng, 1067-1087 (2008) · Zbl 1158.74525
[18] Nagashima, T., Node-by-node meshless approach and its applications to structural analyses. Int J Numer Methods Eng, 3, 341-385 (1999) · Zbl 0965.74079
[19] Liu, G. R.; Zhang, G. Y.; Wang, Y. Y.; Zhong, Z. H.; Li, G. Y.; Han, X., A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int J Solids Struct, 11-12, 3840-3860 (2007) · Zbl 1135.74050
[20] Duan, Q. L.; Belytschko, T., Gradient and dilatational stabilizations for stress-point integration in the element-free Galerkin method. Int J Numer Methods Eng, 776-798 (2009) · Zbl 1156.74393
[21] Wu, C. T.; Wu, Y.; Liu, Z.; Wang, D., A stable and convergent Lagrangian particle method with multiple nodal stress points for large strain and material failure analyses in manufacturing processes. Finite Elem Anal Des, 96-106 (2018)
[22] Jin, Y. F.; Yin, Z. Y.; Zhou, X. W.; Liu, F. T., A stable node-based smoothed PFEM for solving geotechnical large deformation 2D problems. Comput Methods Appl Mech Eng (2021) · Zbl 1507.74481
[23] Chai, Y.; Li, W.; Li, T.; Gong, Z.; You, X., Analysis of underwater acoustic scattering problems using stable node-based smoothed finite element method. Eng Anal Bound Elem, 27-41 (2016) · Zbl 1403.76042
[24] Shafee, A.; Khoshghalb, A., Particle node-based smoothed point interpolation method with stress regularisation for large deformation problems in geomechanics. Comput Geotech (2022)
[25] Yuan, W. H.; Liu, M.; Zhang, X. W.; Wang, H. L.; Zhang, W.; Wu, W., Stabilized smoothed particle finite element method for coupled large deformation problems in geotechnics. Acta Geotech, 3, 1215-1231 (2023)
[26] Zhou, L.; Qu, F.; Ren, S.; Mahesh, V., An inhomogeneous stabilized node-based smoothed radial point interpolation method for the multi-physics coupling responses of functionally graded magneto-electro-elastic structures. Eng Anal Bound Elem, March, 406-422 (2023) · Zbl 1521.74060
[27] Feng, H.; Liang, J., A modified stable node-based smoothed finite element method based on low-quality unstructured mesh. Eng Anal Bound Elem, March, 555-570 (2023) · Zbl 1521.74217
[28] Chen, G.; Qian, L.; Ma, J., A gradient stable node-based smoothed finite element method for solid mechanics problems. Shock Vib (2019), 2019
[29] Wang, Z. Y.; Jin, Y. F.; Yin, Z. Y.; Wang, Y. Z., Overcoming volumetric locking in stable node-based smoothed particle finite element method with cubic bubble function and selective integration. Int J Numer Methods Eng, 24, 6148-6169 (2022) · Zbl 1531.74078
[30] Sloan, S. W.; Sheng, D.; Abbo, A. J., Accelerated initial stiffness schemes for elastoplasticity. Int J Numer Anal Methods Geomech, 6, 579-599 (2000) · Zbl 1009.74073
[31] Chen, X.; Cheng, Y. G., On accelerated symmetric stiffness techniques for non-associated plasticity with application to soil problems. Eng Comput (Swansea, Wales), 8, 1044-1063 (2011)
[32] Chen, J. S.; Wu, C. T.; Yoon, S. P.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng, 435-466 (2001) · Zbl 1011.74081
[33] Abed-Meraim, F.; Combescure, A., An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis. Int J Numer Methods Eng, 1640-1686 (2009) · Zbl 1183.74254
[34] Schwarze, M.; Reese, S., A reduced integration solid-shell finite element based on the EAS and the ANS concept-Large deformation problems. Int J Numer Methods Eng, 289-329 (2011) · Zbl 1217.74135
[35] Belytschko, T.; Bindeman, L. P., Assumed strain stabilization of the eight node hexahedral element. Comput Methods Appl Mech Eng, 2, 225-260 (1993) · Zbl 0781.73061
[36] Wang, D. Y.; Chen, X.; Yu, Y. Z.; Jie, Y. X.; Lyu, Y. N., Stability and Deformation Analysis for Geotechnical Problems with Nonassociated Plasticity Based on Second-Order Cone Programming. Int J Geomech, 2, 1-13 (2019)
[37] Chen, X.; Wang, D. Y.; Yu, Y. Z.; Lyu, Y. N., A modified Davis approach for geotechnical stability analysis involving non-associated soil plasticity. Geotechnique, 12, 1109-1119 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.