×

Generalized parallel sampling. (English) Zbl 0986.82030

Summary: We develop a generalized version of the parallel tempering algorithm, based upon the non-extensive thermostatistics of Tsallis and coworkers. The effectiveness of the method is demonstrated on a simple one-dimensional problem and on a Lennard-Jones cluster.

MSC:

82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)
82B03 Foundations of equilibrium statistical mechanics
Full Text: DOI

References:

[1] C.J. Geyer, Markov chain Monte Carlo maximum likelihood, in: E.M. Keramidas (Ed.), Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, Interface Foundation of North America, Fairfax Station, Virginia, 1991.; C.J. Geyer, Markov chain Monte Carlo maximum likelihood, in: E.M. Keramidas (Ed.), Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, Interface Foundation of North America, Fairfax Station, Virginia, 1991.
[2] Tesi, M. C.; Janse van Rensburg, E. J.; Orlandini, E.; Whittington, S. G., Monte Carlo study of the interacting self-avoiding walk model in three dimensions, J. Stat. Phys., 82, 155 (1996) · Zbl 1042.82555
[3] Hukushima, K.; Nemoto, K., Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Jpn, 65, 1604 (1996)
[4] Hukushima, K.; Takayama, H.; Nemoto, K., Application of an extended ensemble method to spin glasses, Int. J. Mod. Phys. C, 7, 337 (1996)
[5] E. Marinari, Optimized Monte Carlo methods, in: J. Kertész, I. Kondor (Eds.), Advances in Computer Simulation, Lecture Notes in Physics, Vol. 501, Springer, Berlin, 1998 (Chapter 3).; E. Marinari, Optimized Monte Carlo methods, in: J. Kertész, I. Kondor (Eds.), Advances in Computer Simulation, Lecture Notes in Physics, Vol. 501, Springer, Berlin, 1998 (Chapter 3). · Zbl 0898.65099
[6] E. Marinari, G. Parisi, J.J. Ruiz-Lorenzo, Numerical simulations of spin glass systems, in: A.P. Young (Ed.), Spin Glasses and Random Fields, Directions in Condensed Matter Physics, Vol. 12, World Scientific, Singapore, 1998 (Chapter 3).; E. Marinari, G. Parisi, J.J. Ruiz-Lorenzo, Numerical simulations of spin glass systems, in: A.P. Young (Ed.), Spin Glasses and Random Fields, Directions in Condensed Matter Physics, Vol. 12, World Scientific, Singapore, 1998 (Chapter 3).
[7] Whittington, S. G., MCMC methods in statistical mechanics: avoiding quasi-ergodic problems, (Madras, N., Monte Carlo Methods, Fields Institute Communications, No. 26 (2000), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1071.82533
[8] Neirotti, J. P.; Calvo, F.; Freeman, D. L.; Doll, J. D., Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble, J. Chem. Phys., 112, 10340 (2000)
[9] Calvo, F.; Neirotti, J. P.; Freeman, D. L.; Doll, J. D., Phase changes in 38-atom Lennard-Jones clusters. II. A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical ensembles, J. Chem. Phys., 112, 10350 (2000)
[10] Opps, S. B.; Schofield, J., Extended state-space Monte Carlo methods, Phys. Rev. E, 63, 056701 (2001)
[11] Mitsutake, A.; Sugita, Y.; Okamoto, Y., Generalized-ensemble algorithms for molecular simulations of biopolymers, Biopolymers, 60, 96 (2001)
[12] Marinari, E.; Parisi, G.; Ricci-Tersenghi, F.; Zultani, F., The use of optimized Monte Carlo methods for studying spin glasses, J. Phys. A, 34, 383 (2001) · Zbl 0988.82051
[13] Palmer, R. G., Broken ergodicity, Adv. Phys., 31, 669 (1982)
[14] Palmer, R., Broken ergodicity, (Stein, D. L., Lectures in the Sciences of Complexity. Lectures in the Sciences of Complexity, Santa Fe Institute Studies in the Sciences of Complexity, Vol. 1 (1989), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company New York) · Zbl 0795.92001
[15] J.P. Valleau, S.G. Whittington, A guide to Monte Carlo for statistical mechanics: 1. Highways, in: B.J. Berne (Ed.), Statistical Mechanics. Part A: Equilibrium Techniques, Modern Theoretical Chemistry, No. 5, Plenum, New York, 1977 (Chapter 4).; J.P. Valleau, S.G. Whittington, A guide to Monte Carlo for statistical mechanics: 1. Highways, in: B.J. Berne (Ed.), Statistical Mechanics. Part A: Equilibrium Techniques, Modern Theoretical Chemistry, No. 5, Plenum, New York, 1977 (Chapter 4).
[16] Marinari, E.; Parisi, G., Simulated tempering: a new Monte Carlo scheme, Europhys. Lett., 19, 451 (1992)
[17] Lyubartsev, A. P.; Martsinovski, A. A.; Shevkunov, S. V.; Vorontsov-Velyaminov, P. N., New approach to Monte Carlo calculation of the free energy: method of expanded ensembles, J. Chem. Phys., 96, 1776 (1992)
[18] Geyer, C. J.; Thompson, E. A., Annealing Markov chain Monte Carlo with applications to ancestral inference, J. Am. Stat. Assoc., 90, 909 (1995) · Zbl 0850.62834
[19] Frantz, D. D.; Freeman, D. L.; Doll, J. D., Reducing quasi-ergodic behaviour in Monte Carlo simulations by \(j\)-walking: applications to atomic clusters, J. Chem. Phys., 93, 2769 (1990)
[20] Andricioaei, I.; Straub, J. E., On Monte Carlo and molecular dynamics methods inspired by Tsallis statistics: methodology, optimization, and application to atomic clusters, J. Chem. Phys., 107, 9117 (1997)
[21] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479 (1988) · Zbl 1082.82501
[22] Pak, Y.; Wang, S., Folding of a 16-residue helical peptide using molecular dynamics simulation with Tsallis effective potential, J. Chem. Phys., 111, 4359 (1999)
[23] Pak, Y.; Wang, S., Application of a molecular dynamics simulation method with a generalized effective potential to the flexible molecular docking problems, J. Phys. Chem. B, 104, 354 (2000)
[24] Curado, E. M.F.; Tsallis, C., Generalized statistical mechanics: connection with thermodynamics, J. Phys. A, 24, L69 (1991)
[25] Boghosian, B. M., Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics, Phys. Rev. E, 53, 4754 (1996)
[26] Tsallis, C.; Mendes, R. S.; Plastino, A. R., The role of constraints within generalized nonextensive statistics, Physica A, 261, 534 (1998)
[27] Andricioaei, I.; Straub, J. E., Generalized simulated annealing algorithms using Tsallis statistics: application to conformational optimization of a tetrapeptide, Phys. Rev. E, 33, 3055 (1996)
[28] Boghosian, B. M., Navier-Stokes equations for generalized thermostatistics, Braz. J. Phys., 29, 91 (1999)
[29] J.E. Straub, I. Andricioaei, Exploiting Tsallis statistics in: P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (Eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas. Proceedings of the Second International Symposium on Algorithms for Macromolecular Modelling, Berlin, May 21-24, 1997, Lecture Notes in Computational Science and Engineering, Vol. 4, Springer, Berlin, 1998.; J.E. Straub, I. Andricioaei, Exploiting Tsallis statistics in: P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (Eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas. Proceedings of the Second International Symposium on Algorithms for Macromolecular Modelling, Berlin, May 21-24, 1997, Lecture Notes in Computational Science and Engineering, Vol. 4, Springer, Berlin, 1998. · Zbl 1043.82505
[30] Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling, J. Comput. Phys., 23, 187 (1977)
[31] Thirumalai, D.; Mountain, R. D.; Kirkpatrick, T. R., Ergodic behaviour in supercooled liquids and glasses, Phys. Rev. A, 39, 3563 (1989)
[32] Thirumalai, D.; Mountain, R. D., Probes of equipartition in nonlinear Hamiltonian systems, J. Stat. Phys., 57, 789 (1989)
[33] Thirumalai, D.; Mountain, R. D., Ergodic convergence properties of supercooled liquids and glasses, Phys. Rev. A, 42, 4574 (1990)
[34] Hansmann, U. H.E.; Okamoto, Y., Generalized-ensemble Monte Carlo method for systems with rough energy landscape, Phys. Rev. E, 56, 2228 (1997)
[35] Hansmann, U. H.E.; Eisenmenger, F.; Okamoto, Y., Stochastic dynamics simulations in a new generalized ensemble, Chem. Phys. Lett., 297, 374 (1998)
[36] Tsai, C. J.; Jordan, K. D., Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters, J. Phys. Chem., 97, 11227 (1993)
[37] Yurtsever, E.; Calvo, F., Many-body effects on the melting and dynamics of small clusters, Phys. Rev. B, 62, 9977 (2000)
[38] I. Andricioaei, J.E. Straub, Computational methods for the simulation of classical and quantum many body systems sprung from nonextensive thermostatistics, in: S. Abe, Y. Okamoto (Eds.), Nonextensive Statistical Mechanics and its Applications, Lecture Notes in Physics, Vol. 560, Springer, Berlin, 2001 (Chapter IV).; I. Andricioaei, J.E. Straub, Computational methods for the simulation of classical and quantum many body systems sprung from nonextensive thermostatistics, in: S. Abe, Y. Okamoto (Eds.), Nonextensive Statistical Mechanics and its Applications, Lecture Notes in Physics, Vol. 560, Springer, Berlin, 2001 (Chapter IV). · Zbl 0995.82001
[39] Kerler, W.; Rehberg, P., Simulated-tempering procedure for spin-glass simulations, Phys. Rev. E, 50, 4220 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.