×

On the problem of vacuum energy in FLRW universes and dark energy. (English) Zbl 1279.83043

Summary: We present a (hopefully) novel calculation of the vacuum energy in expanding FLRW spacetimes based on the renormalization of quantum field theory in nonzero backgrounds. We compute the renormalized effective action up to the two-point function and then apply the formalism to the cosmological backgrounds of interest. As an example we calculate for quasi de Sitter spacetimes the leading correction to the vacuum energy given by the tadpole diagram and show that it behaves as \(\sim H^2_0\Lambda_P\) where \(H_{0}\) is the Hubble constant and \(\Lambda_P\) is the Planck constant. This is of the same order of magnitude as the observed dark energy density in the universe.

MSC:

83F05 Relativistic cosmology
81T20 Quantum field theory on curved space or space-time backgrounds
81T17 Renormalization group methods applied to problems in quantum field theory
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] DOI: 10.1103/PhysRevD.86.010001 · doi:10.1103/PhysRevD.86.010001
[2] DOI: 10.1103/RevModPhys.61.1 · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[3] DOI: 10.12942/lrr-2001-1 · Zbl 1023.83022 · doi:10.12942/lrr-2001-1
[4] DOI: 10.1142/9789812810526 · doi:10.1142/9789812810526
[5] DOI: 10.1017/CBO9780511622632 · doi:10.1017/CBO9780511622632
[6] Fulling S. A., London Math. Soc. Student Texts 17 pp 1– (1989)
[7] DOI: 10.1098/rspa.1978.0060 · doi:10.1098/rspa.1978.0060
[8] DOI: 10.1103/PhysRevD.31.754 · doi:10.1103/PhysRevD.31.754
[9] DOI: 10.1103/PhysRevD.32.3136 · doi:10.1103/PhysRevD.32.3136
[10] DOI: 10.1103/PhysRevD.63.083514 · doi:10.1103/PhysRevD.63.083514
[11] DOI: 10.1103/PhysRevD.72.021301 · doi:10.1103/PhysRevD.72.021301
[12] DOI: 10.1016/j.nuclphysb.2003.11.001 · Zbl 1065.81090 · doi:10.1016/j.nuclphysb.2003.11.001
[13] DOI: 10.1103/PhysRevD.68.065020 · doi:10.1103/PhysRevD.68.065020
[14] Zinn-Justin J., Int. Ser. Monogr. Phys. 113 pp 1– (2002)
[15] Carroll S. M., Spacetime and Geometry: An Introduction to General Relativity (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.