×

Superresolution using supergrowth and intensity contrast imaging. (English) Zbl 07899125

Summary: This article explores the possibility of another kind of superresolution functionality that exists in superoscillatory functions besides the “faster than Fourier” feature. We posit the ability to resolve images with resolution beyond the wavelength of light used via the exponentially rising and falling parts of superoscillatory and related functions. We give some preliminary results that this technique can indeed be useful using intensity contrast imaging. The exponential growth or decay of these functions can give higher resolution of the image, provided the rate of falloff is faster than the smallest wavenumber of the light that is used: “supergrowth”. One limitation of this proposal is the high dynamic range the detector would need to possess to map out several decades of intensity. An outstanding question is to find the optimal image reconstruction method using a superoscillatory point spread function that makes optimal use of the function’s unique properties. We give a number of conjectures about this new kind of supergrowth imaging technique as an outlook for future research.

MSC:

81-XX Quantum theory
Full Text: DOI

References:

[1] Aharonov, Y., Popescu, S., Rohrlich, D.: How can an infra-red photon behave as a gamma ray?. Tel-Aviv University Preprint TAUP 1847-90
[2] Berry, MV; Popescu, S., Evolution of quantum superoscillations and optical superresolution without evanescent waves, J. Phys. A Math. Gen., 39, 22, 6965, 2006 · Zbl 1122.81029 · doi:10.1088/0305-4470/39/22/011
[3] Berry, MV, Evanescent and real waves in quantum billiards and Gaussian beams, J. Phys. A Math. Gen., 27, 11, L391, 1994 · Zbl 0843.58087 · doi:10.1088/0305-4470/27/11/008
[4] Berry, M.; Zheludev, N.; Aharonov, Y.; Colombo, F.; Sabadini, I.; Struppa, DC; Tollaksen, J.; Rogers, ET; Qin, F.; Hong, M., Roadmap on superoscillations, J. Opt., 21, 5, 053002, 2019 · doi:10.1088/2040-8986/ab0191
[5] Aharonov, Y.; Colombo, F.; Sabadini, I.; Struppa, DC; Tollaksen, J., Some mathematical properties of superoscillations, J. Phys. A Math. Theor., 44, 36, 365304, 2011 · Zbl 1230.42004 · doi:10.1088/1751-8113/44/36/365304
[6] Popescu, S.: Multi-time and non-local measurements in quantum mechanics. Ph.D. thesis, PhD Thesis (1991)
[7] Lipson, A.; Lipson, SG; Lipson, H., Optical Physics, 2010, Cambridge: Cambridge University Press, Cambridge · Zbl 1232.78001 · doi:10.1017/CBO9780511763120
[8] Tsang, M.; Nair, R.; Lu, XM, Quantum theory of superresolution for two incoherent optical point sources, Phys. Rev. X, 6, 031033, 2016
[9] Pendharker, S.; Shende, S.; Newman, W.; Ogg, S.; Nazemifard, N.; Jacob, Z., Axial super-resolution evanescent wave tomography, Opt. Lett., 41, 23, 5499, 2016 · doi:10.1364/OL.41.005499
[10] Boto, AN; Kok, P.; Abrams, DS; Braunstein, SL; Williams, CP; Dowling, JP, Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit, Phys. Rev. Lett., 85, 2733, 2000 · doi:10.1103/PhysRevLett.85.2733
[11] Huang, FM; Chen, Y.; de Abajo, FJG; Zheludev, NI, Optical super-resolution through super-oscillations, J. Opt. A Pure Appl. Opt., 9, 9, S285, 2007 · doi:10.1088/1464-4258/9/9/S01
[12] Kozawa, Y.; Matsunaga, D.; Sato, S., Superresolution imaging via superoscillation focusing of a radially polarized beam, Optica, 5, 2, 86, 2018 · doi:10.1364/OPTICA.5.000086
[13] McCutchen, C., Optical systems for observing surface topography by frustrated total internal reflection and by interference, Rev. Sci. Instrum., 35, 10, 1340, 1964 · doi:10.1063/1.1718740
[14] Guerra, JM, Photon tunneling microscopy, Appl. Opt., 29, 26, 3741, 1990 · doi:10.1364/AO.29.003741
[15] Pohl, DW; Denk, W.; Lanz, M., Optical stethoscopy: image recording with resolution \(\lambda /20\), Appl. Phys. Lett., 44, 7, 651, 1984 · doi:10.1063/1.94865
[16] Born, M.; Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 2013, Amsterdam: Elsevier, Amsterdam
[17] Motka, L.; Stoklasa, B.; D’Angelo, M.; Facchi, P.; Garuccio, A.; Hradil, Z.; Pascazio, S.; Pepe, F.; Teo, Y.; Řeháček, J., Optical resolution from Fisher information, Eur. Phys. J. Plus, 131, 5, 130, 2016 · doi:10.1140/epjp/i2016-16130-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.