×

Reconstructing quantum theory from its possibilistic operational formalism. (English) Zbl 07899068

Summary: We develop a possibilistic semantic formalism for quantum phenomena from an operational perspective. This semantic system is based on a Chu duality between preparation processes and yes/no tests, the target space being a three-valued set equipped with an informational interpretation. A basic set of axioms is introduced for the space of states. This basic set of axioms suffices to constrain the space of states to be a projective domain. The subset of pure states is then characterized within this domain structure. After having specified the notions of properties and measurements, we explore the notion of compatibility between measurements and of minimally disturbing measurements. We achieve the characterization of the domain structure on the space of states by requiring the existence of a scheme of discriminating yes/no tests, necessary condition for the construction of an orthogonality relation on the space of states. This last requirement about the space of states constrain the corresponding projective domain to be ortho-complemented. An orthogonality relation is then defined on the space of states and its properties are studied. Equipped with this relation, the ortho-poset of ortho-closed subsets of pure states inherits naturally a structure of Hilbert lattice. Finally, the symmetries of the system are characterized as a general subclass of Chu morphisms. We prove that these Chu symmetries preserve the class of minimally disturbing measurements and the orthogonality relation between states. These symmetries lead naturally to the ortho-morphisms of Hilbert lattice, defined on the set of ortho-closed subsets of pure states.

MSC:

81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
18C50 Categorical semantics of formal languages
18B35 Preorders, orders, domains and lattices (viewed as categories)

References:

[1] Abramsky, S.: Big toy models. Synthese 186(3), 697-718 (Jun2012) · Zbl 1275.81008
[2] Abramsky, S., Coalgebras, Chu Spaces, and Representations of Physical Systems, J. Philos. Log., 42, 3, 551-574 (2013) · Zbl 1270.81040 · doi:10.1007/s10992-013-9276-4
[3] Abramsky, S.; Coecke, B.; Engesser, K.; Gabbay, DM; Lehmann, D., Categorical Quantum Mechanics, Handbook of Quantum Logic and Quantum Structures, 261-323 (2009), Amsterdam: Elsevier, Amsterdam · Zbl 1273.81014 · doi:10.1016/B978-0-444-52869-8.50010-4
[4] Abramsky, S., Heunen, C.: Operational theories and categorical quantum mechanics, page 88-122. Lecture Notes in Logic. Cambridge University Press, (2016) · Zbl 1355.81028
[5] Abramsky, S., Jung, A.: Handbook of Logic in Computer Science - Vol 3, chapter Domain Theory, pages 1-168. Oxford University Press, Inc., New York, NY, USA, (1994)
[6] Aerts, D., Construction of the tensor product for the lattices of properties of physical entities, J. Math. Phys., 25, 5, 1434-1441 (1984) · doi:10.1063/1.526312
[7] Aerts, D.; Valckenborgh, F., Failure of standard quantum mechanics for the description of compound quantum entities, Int. J. Theor. Phys., 43, 1, 251-264 (2004) · Zbl 1065.81009 · doi:10.1023/B:IJTP.0000028862.91652.98
[8] Aerts, D., Van Steirteghem, B. Quantum: Axiomatics and a Theorem of M. P. Solèr. International Journal of Theoretical Physics, 39(3):497-502, (2000) · Zbl 0985.81010
[9] Baltag, A., Smets, S.: Complete axiomatizations for quantum actions. Int. J. Theor. Phys. 44(12), 2267-2282 (Dec2005) · Zbl 1110.81013
[10] Baltag, A.; Smets, S., LQP: the dynamic logic of quantum information, Math. Struct. Comput. Sci., 16, 3, 491-525 (2006) · Zbl 1103.03031 · doi:10.1017/S0960129506005299
[11] Baltag, A., Smets, S.: A dynamic-logical perspective on quantum behavior. Stud. Logica. 89(2), 187-211 (Jul2008) · Zbl 1144.81432
[12] Barr, M., *-Autonomous Categories and Linear Logic, Math. Struct. Comput. Sci., 1, 159-178 (1991) · Zbl 0777.18006 · doi:10.1017/S0960129500001274
[13] Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (Mar2007)
[14] Bergfeld, J.M., Kishida, K., Sack, J., Zhong, S.: Duality for the Logic of Quantum Actions. Stud. Logica. 103(4), 781-805 (Aug2015) · Zbl 1361.06005
[15] Birkhoff, G.; Von Neumann, J., The logic of quantum mechanics, Ann. Math., 37, 823-843 (1936) · Zbl 0015.14603 · doi:10.2307/1968621
[16] Bordalo, GH; Rodrigues, E., Complements in modular and semimodular lattices, Port. Math., 55, 373-380 (1998) · Zbl 0913.06006
[17] Cabello, A. Specker’s fundamental principle of quantum mechanics, 2012
[18] Cassinelli, G., Beltrametti, E.G.: Ideal, first-kind measurements in a proposition-state structure. Commun. Math. Phys. 40(1), 7-13 (Feb1975) · Zbl 0317.06008
[19] Chiribella, G.; Chiribella, DA; Mauro; Perinotti, P., Informational derivation of quantum theory, Phys. Rev. A, 84 (2011) · doi:10.1103/PhysRevA.84.012311
[20] Coecke, B., Moore, D.J., Smets, S.: Logic of Dynamics and Dynamics of Logic: Some Paradigm Examples, pages 527-555. Springer Netherlands, Dordrecht, (2004) · Zbl 1165.03328
[21] Coecke, B., Moore, D. J., Wilce, A.: Operational Quantum Logic: An Overview, pages 1-36. Springer Netherlands, Dordrecht, (2000) · Zbl 0963.81004
[22] Coecke, B., Moore, D.J., Stubbe, I.: Quantaloids describing causation and propagation of physical properties. Found. Phys. Lett. 14(2), 133-145 (Apr2001)
[23] Coecke, B., Smets, S.: A logical description for perfect measurements. Int. J. Theor. Phys. 39(3), 595-603 (Mar2000) · Zbl 0963.03082
[24] Coecke, B., Smets, S.: The Sasaki Hook Is Not a [Static] Implicative Connective but Induces a Backward [in Time] Dynamic One That Assigns Causes. Int. J. Theor. Phys. 43(7), 1705-1736 (Aug2004) · Zbl 1077.81006
[25] Crawley, P., Dilworth, R.P.: Algebraic theory of lattices. Prentice-Hall Englewood Cliffs, N.J. (1973) · Zbl 0494.06001
[26] Dacey, J.R.: Orthomodular spaces, Ph.D. Thesis, University of Massachusetts Amherst (1968)
[27] Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777-780 (May935) · Zbl 0012.04201
[28] Faure, C.-A., Froelicher, A.: Projective Geometries and Projective Lattices. In: Modern Projective Geometry. Mathematics and Its Applications, pp. 25-53. Springer, Dordrecht (2000) · Zbl 0972.51001
[29] Foulis, DJ; Randall, CH, Empirical logic and tensor products (1981), Germany: Bibliographisches Inst, Germany
[30] Foulis, D., Piron, C., Randall, C.: Realism, operationalism, and quantum mechanics. Found. Phys. 13(8), 813-841 (Aug1983)
[31] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Encyclopedia of Mathematics and its Applications (2003) · Zbl 1088.06001
[32] Girard, J-Y, Linear logic, Theor. Comput. Sci., 50, 1, 1-101 (1987) · Zbl 0625.03037 · doi:10.1016/0304-3975(87)90045-4
[33] Girard, J-Y; Taylor, P.; Lafont, Y., Proofs and Types (1989), New York: Cambridge University Press, New York · Zbl 0671.68002
[34] Gleason, A.M.: Measures on the Closed Subspaces of a Hilbert Space, pages 123-133. Springer Netherlands, Dordrecht, (1975)
[35] Hardegree, GM, Reichenbach and the logic of quantum mechanics, Synthese, 35, 1, 3-40 (1997) · Zbl 0371.02006 · doi:10.1007/BF00485434
[36] Hardy, L.: Quantum theory from five reasonable axioms. (2001)
[37] Hardy, L.: Reformulating and Reconstructing Quantum Theory. (2011)
[38] Hardy, L., Reconstructing quantum theory, Fundam. Theor. Phys., 181, 223-248 (2016) · doi:10.1007/978-94-017-7303-4_7
[39] Hoehn, P.A.: Toolbox for reconstructing quantum theory from rules on information acquisition. Quantum 1, 38 (Dec2017)
[40] Hoehn, P.A., Wever, C.S.P.: Quantum theory from questions. Phys. Rev. A 95, 012102 (Jan2017)
[41] Holland, S. S.: Orthomodularity in infinite dimensions : a theorem of M. Soler. Bull. Am. Math. Soc., 32(math.RA/9504224):205-234, (1995) · Zbl 0856.11021
[42] Janotta, P., Hinrichsen, H.: Generalized probability theories: what determines the structure of quantum theory? J. Phys. A: Math. Theor. 47(32), 323001 (Jul2014) · Zbl 1312.81005
[43] Keimel, K., Lawson, J.: Continuous and Completely Distributive Lattices, pages 5-53. Lattice Theory: Special Topics and Applications: Volume 1. Ed.Grätzer, G., Wehrung, F. Springer International Publishing, (2014) · Zbl 1346.06005
[44] Kochen, S.; Specker, E., The problem of hidden variables in quantum mechanics, Indiana Univ. Math. J., 17, 59-87 (1968) · Zbl 0156.23302 · doi:10.1512/iumj.1968.17.17004
[45] Kraus, K., Böhm, A., Dollard, J.D., Wootters, W.H., editor. States, Effects, and Operations - Fundamental Notions of Quantum Theory, volume 190 of Lecture Notes in Physics, Berlin Springer Verlag, 1983 · Zbl 0545.46049
[46] Ludwig, G.: Quantum theory as a theory of interactions between macroscopic systems which can be described objectively. Erkenntnis 16(3), 359-387 (Nov1981)
[47] Ludwig, G. Foundations of Quantum Mechanics, volume 1 of Theoretical and Mathematical Physics. Springer-Verlag, Berlin Heidelberg, 1983. Original German edition published in one volume as Band 70 of the series: Grundlehren der mathematischen Wissenschaften · Zbl 0509.46057
[48] Ludwig, G.; Summers, SJ, An Axiomatic Basis for Quantum Mechanics Volume 1: Derivation of Hilbert Space Structure and Volume 2: Quantum Mechanics and Macrosystems, Phys. Today, 41, 72 (1988) · doi:10.1063/1.2811530
[49] MacKey, G. W. The Mathematical Foundations of Quantum Mechanics: a Lecture. Mathematical physics monograph series. Benjamin, New York, NY, 1963. This book has also been published by Dover in 1963 · Zbl 0114.44002
[50] Moore, DJ, Categories of representations of physical systems, Helv. Phys. Acta, 68, 7-8, 658-678 (1995) · Zbl 0856.18002
[51] Moore, D.J.: On State Spaces and Property Lattices. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 30(1), 61-83 (1999) · Zbl 1222.81015
[52] Mueller, MP; Masanes, L., Information-theoretic postulates for quantum theory, Fundam. Theor. Phys., 181, 139-170 (2016) · doi:10.1007/978-94-017-7303-4_5
[53] Pauli, W., Die allgemeinen Prinzipien der Wellenmechanik, Handbuch der Physik, 5, 1-168 (1958)
[54] Peres, A. Quantum theory : concepts and methods . Dordrecht ; Boston : Kluwer Academic , 1993 . Reprinted with corrections [1995?]-Verso t.p. paperback reprint · Zbl 0820.00011
[55] Piron, C.: Survey of general quantum physics. Found. Phys. 2(4), 287-314 (Oct1972)
[56] Piron, C. On the Foundations of Quantum Physics, pages 105-116. Springer Netherlands, Dordrecht, 1976 · Zbl 0333.46050
[57] Piron, C. A First Lecture on Quantum Mechanics, pages 69-87. Springer Netherlands, Dordrecht, 1977
[58] Piron, C.: Ideal measurement and probability in quantum mechanics. Erkenntnis 16(3), 397-401 (Nov1981)
[59] Pokorny, F., Zhang, C., Higgins, G., Cabello, A., Kleinmann, M., Hennrich, M.: Tracking the Dynamics of an Ideal Quantum Measurement. Phys. Rev. Lett. 124, 080401 (Feb2020)
[60] Pratt, V. R. Chu spaces: automata with quantum aspects. In Proceedings Workshop on Physics and Computation. PhysComp ’94, pages 186-195, 1994
[61] Pratt, V.R. Chu Spaces, 1999
[62] Pratt, VR, Chu spaces from the representational viewpoint, Ann. Pure Appl. Logic, 96, 1, 319-333 (1999) · Zbl 0933.68084 · doi:10.1016/S0168-0072(98)00043-8
[63] Randall, C., Foulis, D. Tensor products of quantum logics do not exist. Notices Am. Math. Soc, 26(6), 1979
[64] Reichenbach, H. The Logico-Algebraic Approach to Quantum Mechanics, volume vol 5a of The University of Western Ontario Series in Philosophy of Science (A Series of Books on Philosophy of Science, Methodology, and Epistemology, chapter Three-Valued Logic and the Interpretation of Quantum Mechanics, pages 53-97. Dordrecht, springer edition, 1975 · Zbl 0429.03045
[65] Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637-1678 (Aug1996) · Zbl 0885.94012
[66] Seevinck, M.P. from E. Specker: “The logic of non-simultaneously decidable propositions” (1960). Translation of ’Die Logik Der Nicht Gleichzeitig Entscheidbarer Aussagen’ by Ernst Specker, Dialectica, vol. 14, 239 - 246 (1960)
[67] Spekkens, R.W.: Evidence for the epistemic view of quantum states: A toy theory. Phys. Rev. A 75, 032110 (Mar2007)
[68] Stubbe, I.; van Steirteghem, B.; Engesser, K.; Gabbay, DM; Lehmann, D., Propositional systems, Hilbert lattices and generalized hilbert spaces, Handbook of Quantum Logic and Quantum Structures, 477-523 (2007), Amsterdam: Elsevier Science B.V, Amsterdam · Zbl 1126.81009 · doi:10.1016/B978-044452870-4/50033-9
[69] Vetterlein, T., Orthogonality Spaces Arising from Infinite-Dimensional Complex Hilbert Spaces, Int. J. Theor. Phys., 60, 2, 727-738 (2021) · Zbl 1503.46020 · doi:10.1007/s10773-019-04230-4
[70] Wilce, A. Test Spaces and Orthoalgebras, pages 81-114. Springer Netherlands, Dordrecht, 2000 · Zbl 0990.81003
[71] Wilce, A. Test Spaces In Engesser, K., Gabbay D.M., Lehmann, D., editor, Handbook of Quantum Logic and Quantum Structures, pages 443-549. Elsevier Science B.V., Amsterdam, 2009 · Zbl 1273.81025
[72] Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29(4), 631-643 (Apr1999)
[73] Zhong, S., Correspondence Between Kripke Frames and Projective Geometries, Stud. Logica., 106, 1, 167-189 (2018) · Zbl 1437.03094 · doi:10.1007/s11225-017-9733-0
[74] Zhong, S. Quantum States: An Analysis via the Orthogonality Relation. Synthese, 2021 · Zbl 1528.81020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.