×

Algebraically stable SDIRK methods with controllable numerical dissipation for first/second-order time-dependent problems. (English) Zbl 07863644

Summary: In this paper, a family of four-stage singly diagonally implicit Runge-Kutta methods are proposed to solve first-/second-order time-dependent problems, exhibiting the following numerical properties: fourth-order accuracy in time, unconditional stability, controllable numerical dissipation, and adaptive time step selection. The BN-stability condition is employed as a constraint to optimize parameters in the Butcher table, having significant benefits, and hence is recommended for nonlinear dynamics problems in contrast to existing methods. Numerical examples involving both first- and second-order linear/nonlinear dynamics problems validate the proposed method, and numerical results reveal that the proposed methods are free from the order reduction phenomenon when applied to nonlinear dynamics problems. The performance of adaptive time-stepping using the embedded scheme is further illustrated by the phase-field modeling problem. Additionally, the advantages and disadvantages of three-stage third-order accurate algebraically stable methods are discussed. The proposed high-order time integration can be readily integrated into high-order spatial discretization methods, such as the high-order spectral element method employed in this paper, to obtain high-order discretization in space and time dimensions.

MSC:

65Lxx Numerical methods for ordinary differential equations
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
74Hxx Dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Wang, Y.; Tamma, K.; Maxam, D.; Xue, T.; Qin, G., An overview of high-order implicit algorithms for first-/second-order systems and novel explicit algorithm designs for first-order system representations, Arch. Comput. Methods Eng., 28, 3593-3619, 2021
[2] Wang, Y.; Maxam, D.; Tamma, K. K.; Qin, G., Design/analysis of GEGS4-1 time integration framework with improved stability and solution accuracy for first-order transient systems, J. Comput. Phys., 422, Article 109763 pp., 2020 · Zbl 07508386
[3] Li, L.; Lou, J.; Nishikawa, H.; Luo, H., Reconstructed discontinuous Galerkin methods for compressible flows based on a new hyperbolic Navier-Stokes system, J. Comput. Phys., 427, Article 110058 pp., 2021 · Zbl 07510244
[4] Boom, P. D.; Zingg, D. W., Optimization of high-order diagonally-implicit Runge-Kutta methods, J. Comput. Phys., 371, 168-191, 2018 · Zbl 1415.65159
[5] Nazari, F.; Mohammadian, A.; Charron, M., High-order low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes, J. Comput. Phys., 286, 38-48, 2015 · Zbl 1352.65191
[6] Westermann, H.; Mahnken, R., On the accuracy, stability and computational efficiency of explicit last-stage diagonally implicit Runge-Kutta methods (ELDIRK) for the adaptive solution of phase-field problems, Comput. Methods Appl. Mech. Eng., 418, Article 116545 pp., 2024 · Zbl 1539.65078
[7] Giri, S.; Sen, S., A new class of diagonally implicit Runge-Kutta methods with zero dissipation and minimized dispersion error, J. Comput. Appl. Math., 376, Article 112841 pp., 2020 · Zbl 1524.65266
[8] Ferracina, L.; Spijker, M., Strong stability of singly-diagonally-implicit Runge-Kutta methods, Appl. Numer. Math., 58, 11, 1675-1686, 2008 · Zbl 1153.65080
[9] Kennedy, C. A.; Carpenter, M. H., Diagonally implicit Runge-Kutta methods for ordinary differential equations: a review, 2016, National Aeronautics and Space Administration, Tech. Rep.
[10] Wang, Y.; Xue, X.; Zhang, T.; Dai, Q.; Liu, Y.; Xie, N.; Mei, S.; Zhang, X.; Tamma, K., Overview and novel insights into implicit/explicit composite time integration type methods—fall under the RK: no ifs, ands, or buts, Arch. Comput. Methods Eng., 30, 3891-3940, 2023
[11] Burrage, K.; Butcher, J. C., Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16, 1, 46-57, 1979 · Zbl 0396.65043
[12] Hairer, E.; Wanner, G., Algebraically stable and implementable Runge-Kutta methods of high order, SIAM J. Numer. Anal., 18, 6, 1098-1108, 1981 · Zbl 0533.65041
[13] Wang, Y.; Xue, X.; Wang, T.; Xie, N.; Jia, H.; Hu, Z.; Tamma, K., The generalization of diagonally implicit Runge-Kutta-Nystrom method with controllable numerical dissipation for structural dynamics, Nonlinear Dyn., 112, 525-559, 2024
[14] Ji, Y.; Xing, Y.; Wiercigroch, M., An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics, Nonlinear Dyn., 105, 4, 3341-3358, 2021
[15] Li, J.; Zhao, R.; Yu, K.; Li, X., Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics, Comput. Methods Appl. Mech. Eng., 389, Article 114274 pp., 2022 · Zbl 1507.65118
[16] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff ODE’s, SIAM J. Numer. Anal., 14, 6, 1006-1021, 1977 · Zbl 0374.65038
[17] Hairer, E., Highest possible order of algebraically stable diagonally implicit Runge-Kutta methods, BIT Numer. Math., 20, 2, 254-256, 1980 · Zbl 0425.65037
[18] Hu, F.; Hussaini, M. Y.; Manthey, J., Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys., 124, 1, 177-191, 1996 · Zbl 0849.76046
[19] Beam, R. M.; Warming, R. F., An implicit finite-difference algorithm for hyperbolic systems in conservation-law form, J. Comput. Phys., 22, 1, 87-110, 1976 · Zbl 0336.76021
[20] Wang, Y.; Xie, N.; Yin, L.; Zhang, T.; Zhang, X.; Mei, S.; Xue, X.; Tamma, K., On the application of the GS4-1 framework for fluid dynamics and adaptive time-stepping via a universal A-posteriori error estimator, Int. J. Numer. Methods Heat Fluid Flow, 32, 10, 3306-3327, 2022
[21] Wang, Y.; Zhang, T.; Zhang, X.; Mei, S.; Xie, N.; Xue, X.; Tamma, K., On an accurate A-posteriori error estimator and adaptive time stepping for the implicit and explicit composite time integration algorithms, Comput. Struct., 266, Article 106789 pp., 2022
[22] Wang, Y.; Xue, T.; Tamma, K. K.; Maxam, D.; Qin, G., An accurate and simple universal a posteriori error estimator for GS4-1 framework: adaptive time stepping in first-order transient systems, Comput. Methods Appl. Mech. Eng., 374, Article 113604 pp., 2021 · Zbl 1506.65166
[23] Masuri, S.; Sellier, M.; Zhou, X.; Tamma, K., Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation, Int. J. Numer. Methods Eng., 88, 13, 1411-1448, 2011 · Zbl 1242.74031
[24] Masuri, S.; Tamma, K.; Zhou, X.; Sellier, M., GS4-1 computational framework for heat transfer problems: part 2—extension to nonlinear cases with illustration to radiation heat transfer problem, Numer. Heat Transf., Part B, Fundam., 62, 2-3, 157-180, 2012
[25] Van Der Pol, B.; Van Der Mark, J., Lxxii. the heartbeat considered as a relaxation oscillation, and an electrical model of the heart, Lond. Edinb. Dublin Philos. Mag. J. Sci., 6, 38, 763-775, 1928
[26] Prothero, A.; Robinson, A., On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. Comput., 28, 125, 145-162, 1974 · Zbl 0309.65034
[27] Frank, R.; Schneid, J.; Ueberhuber, C. W., Order results for implicit Runge-Kutta methods applied to stiff systems, SIAM J. Numer. Anal., 22, 3, 515-534, 1985 · Zbl 0577.65056
[28] Kim, W., An accurate two-stage explicit time integration scheme for structural dynamics and various dynamic problems, Int. J. Numer. Methods Eng., 120, 1, 1-28, 2019 · Zbl 07859723
[29] Kim, W.; Choi, S. Y., An improved implicit time integration algorithm: the generalized composite time integration algorithm, Comput. Struct., 196, 341-354, 2018
[30] Karniadakis, G.; Sherwin, S. J., Spectral/Hp Element Methods for Computational Fluid Dynamics, 2005, Oxford University Press: Oxford University Press USA · Zbl 1116.76002
[31] Wang, Y.; Qin, G., An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation, Comput. Fluids, 174, 122-134, 2018 · Zbl 1410.76319
[32] Wang, Y.; Qin, G.; He, W.; Ye, X., Spectral element method for numerical simulation of ETHD enhanced heat transfer in an enclosure with uniform and sinusoidal temperature boundary conditions, Int. J. Heat Mass Transf., 141, 949-963, 2019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.