×

Effect of slip boundary condition on flow and heat transfer of a double fractional Maxwell fluid. (English) Zbl 07848595

Summary: The purpose of the present paper is to investigate the flow and heat transfer of a double fractional Maxwell fluid with a second order slip model. The fractional governing equations are solved numerically by using the finite difference method. By comparing the analytical solutions of special boundary conditions, the validity of the present numerical method is examined. The effects of the two slip parameters and the fractional parameters on the velocity and temperature distribution are presented graphically and discussed. The results reveal that the fractional Maxwell fluid exhibits a stronger viscosity or elasticity for different fractional parameters, and the oscillation phenomenon will gradually decrease as expected with an increase in slip parameters.

MSC:

76Axx Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
76Dxx Incompressible viscous fluids
76Mxx Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Rao, I. J.; Rajagopal, K. R., The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech., 135, 113-126, 1999 · Zbl 0936.76013
[2] Ariel, P. D.; Hayat, T.; Asghar, S., The flow of an elastico-viscous fluid past a stretching sheet with partial slip, Acta Mech., 187, 29-35, 2006 · Zbl 1103.76010
[3] Wang, C. Y., Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear Anal. Real, 10, 375-380, 2009 · Zbl 1154.76330
[4] Beskok, A.; Karniadakis, G. E.; Trimmer, W., Rarefaction and compressibility effects in gas microflows, J. Fluid Eng., 118, 448-456, 1996
[5] Wu, L., A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett., 93, Article 253103 pp., 2008
[6] Noghrehabadi, A.; Pourrajab, R.; Ghalambaz, M., Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature, Int. J. Therm. Sci., 54, 253-261, 2012
[7] Besthapu, P.; Haq, R. U.; Bandari, S.; Al-Mdallal, Q. M., Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface, Neural Comput. Appl., 31, 207-217, 2019
[8] Avramenko, A. A.; Kovetska, Y. Y.; Shevchuk, I. V.; Tyrinov, A. I.; Shevchuk, V. I., Heat transfer in a porous microchannels with second order slipping boundary conditions, Transp. Porous. Med., 129, 673-699, 2019
[9] Xiao, N.; Elsnab, J.; Ameel, T., Microtube gas flows with second-order slip flow and temperature jump boundary conditions, Int. J. Therm. Sci., 48, 243-251, 2009
[10] Fang, T.; Yao, S.; Zhang, J.; Abdul, A., Viscous flow over a shrinking sheet with a second order slip flow model, Commun. Nonlinear Sci. Numer. Simul., 15, 1831-1842, 2010 · Zbl 1222.76028
[11] Turkyilmazoglu, M., Heat and mass transfer of MHD second order slip flow, Comput. Fluid., 71, 426-434, 2013 · Zbl 1365.76349
[12] Zhu, J.; Yang, D.; Zheng, L. C.; Zhang, X. X., Effects of second order velocity slip and nanoparticles migration on flow of Buongiorno nanofluid, Appl. Math. Lett., 52, 183-191, 2016 · Zbl 1330.76107
[13] Mabood, F.; Shafiq, A.; Hayat, T.; Abelman, S., Radiation effects on stagnation point flow with melting heat transfer and second order slip, Results Phys., 7, 31-42, 2017
[14] Tan, W. C.; Pan, W. X.; Xu, M. Y., A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Int. J. Non-Linear Mech., 38, 645-650, 2003 · Zbl 1346.76009
[15] Khan, M.; Ali, S. H.; Fetecau, C.; Qi, H., Decay of potential vortex for a viscoelastic fluid with fractional Maxwell model, Appl. Math. Model., 33, 2526-2533, 2009 · Zbl 1185.76523
[16] Cao, Z.; Zhao, J. H.; Wang, Z. J.; Liu, F. W.; Zheng, L. C., MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid over a moving plate, J. Mol. Liq., 222, 1121-1127, 2016
[17] Zhang, Y.; Zhao, H. J.; Liu, F. W.; Bai, Y., Analytical and numerical solutions of the unsteady 2D flow of MHD fractional Maxwell fluid induced by variable pressure gradient, Comput. Math. Appl., 75, 965-980, 2018 · Zbl 1409.76094
[18] Chen, X. H.; Ye, Y. F.; Zhang, X. R.; Zheng, L. C., Lie-group similarity solution and analysis for fractional viscoelastic MHD fluid over a stretching sheet, Comput. Math. Appl., 75, 3002-3011, 2018 · Zbl 1415.76517
[19] Shen, M.; Chen, S. R.; Liu, F. W., Unsteady MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid with Cattaneo heat flux and different particle shapes, Chin J. Phys., 56, 1199-1211, 2018 · Zbl 07819506
[20] Vieru, D.; Fetecau, C.; Fetecau, C., Flow of a generalized Oldroyd-B fluid due to a constantly accelerating plate, Appl. Math. Comput., 201, 834-842, 2008 · Zbl 1143.76011
[21] Friedrich, C., Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30, 151-158, 1991
[22] Zhao, J. H.; Zheng, L. C.; Zhang, X. X.; Liu, F. W., Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate, Int. J. Heat Mass Transf., 97, 760-766, 2016
[23] Pan, M. Y.; Zheng, L. C.; Liu, F. W.; Zhang, X. X., Modeling heat transport in nanofluids with stagnation point flow using fractional calculus, Appl. Math. Model., 40, 8974-8984, 2016 · Zbl 1480.76006
[24] Hayat, T.; Nadeem, S.; Asghar, S., Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model, Appl. Math. Comput., 151, 153-161, 2004 · Zbl 1161.76436
[25] Yin, Y. B.; Zhu, K. Q., Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model, Appl. Math. Comput., 173, 231-242, 2006 · Zbl 1105.76009
[26] Tan, W. C.; Xu, M. Y., Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model, Acta Mech. Sinica., 18, 342-349, 2002
[27] Yang, D.; Zhu, K. Q., Start-up flow of a viscoelastic fluid in a pipe with a fractional Maxwell’s model, Comput. Math. Appl., 60, 2231-2238, 2010 · Zbl 1205.76038
[28] Chen, X. H.; Yang, W. D.; Zhang, X. R.; Liu, F. W., Unsteady boundary layer flow of viscoelastic MHD fluid with a double fractional Maxwell model, Appl. Math. Lett., 95, 143-149, 2019 · Zbl 1448.76017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.