×

The stability of simple plane-symmetric shock formation for three-dimensional compressible Euler flow with vorticity and entropy. (English) Zbl 07846447

Authors’ abstract: Consider a one-dimensional simple small-amplitude solution \((\varrho_{(\operatorname{bkg})}, v^1_{(\operatorname{bkg})})\) to the isentropic compressible Euler equations which has smooth initial data, coincides with a constant state outside a compact set, and forms a shock in finite time. Viewing \((\varrho_{(\operatorname{bkg})}, v^1_{(\operatorname{bkg})})\) as a plane-symmetric solution to the full compressible Euler equations in three dimensions, we prove that the shock-formation mechanism for the solution \((\varrho_{(\operatorname{bkg})}, v^1_{(\operatorname{bkg})})\) is stable against all sufficiently small and compactly supported perturbations. In particular, these perturbations are allowed to break the symmetry and have nontrivial vorticity and variable entropy.
Our approach reveals the full structure of the set of blowup-points at the first singular time: within the constant-time hypersurface of first blowup, the solution’s first-order Cartesian coordinate partial derivatives blow up precisely on the zero level set of a function that measures the inverse foliation density of a family of characteristic hypersurfaces. Moreover, relative to a set of geometric coordinates constructed out of an acoustic eikonal function, the fluid solution and the inverse foliation density function remain smooth up to the shock; the blowup of the solution’s Cartesian coordinate partial derivatives is caused by a degeneracy between the geometric and Cartesian coordinates, signified by the vanishing of the inverse foliation density (i.e., the intersection of the characteristics).

MSC:

35L67 Shocks and singularities for hyperbolic equations
35Q31 Euler equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics

References:

[1] 10.1007/BF01231301 · Zbl 0798.35129 · doi:10.1007/BF01231301
[2] 10.1007/BF02392822 · Zbl 0973.35135 · doi:10.1007/BF02392822
[3] 10.2307/121020 · Zbl 1080.35043 · doi:10.2307/121020
[4] 10.5802/jedp.599 · doi:10.5802/jedp.599
[5] 10.1090/memo/0694 · Zbl 0958.35001 · doi:10.1090/memo/0694
[6] 10.1007/s00220-021-04271-z · Zbl 1496.35289 · doi:10.1007/s00220-021-04271-z
[7] 10.1007/s40818-022-00141-6 · Zbl 1504.35192 · doi:10.1007/s40818-022-00141-6
[8] 10.1002/cpa.21956 · Zbl 1498.35405 · doi:10.1002/cpa.21956
[9] 10.1002/cpa.22068 · Zbl 1527.35230 · doi:10.1002/cpa.22068
[10] 10.1002/cpa.22067 · Zbl 1527.35229 · doi:10.1002/cpa.22067
[11] 10.1016/S1874-5792(02)80012-X · doi:10.1016/S1874-5792(02)80012-X
[12] 10.1137/21M1426316 · Zbl 1527.35177 · doi:10.1137/21M1426316
[13] 10.1090/S0273-0979-07-01181-0 · Zbl 1172.76045 · doi:10.1090/S0273-0979-07-01181-0
[14] 10.4171/031 · Zbl 1117.35001 · doi:10.4171/031
[15] 10.4171/192 · Zbl 1445.35003 · doi:10.4171/192
[16] ; Christodoulou, Demetrios; Klainerman, Sergiu, The global nonlinear stability of the Minkowski space. Princeton Math. Ser., 41, 1993 · Zbl 0827.53055
[17] 10.1007/s40818-016-0009-1 · Zbl 1402.35172 · doi:10.1007/s40818-016-0009-1
[18] ; Christodoulou, Demetrios; Miao, Shuang, Compressible flow and Euler’s equations. Surv. Modern Math., 9, 2014 · Zbl 1329.76002
[19] 10.1063/1.4960044 · Zbl 1348.78014 · doi:10.1063/1.4960044
[20] 10.1007/s00205-021-01637-4 · Zbl 1470.35278 · doi:10.1007/s00205-021-01637-4
[21] 10.4171/jems/1240 · Zbl 1501.35312 · doi:10.4171/jems/1240
[22] 10.24033/asens.2513 · Zbl 1501.35089 · doi:10.24033/asens.2513
[23] 10.1007/3-540-29089-3_14 · doi:10.1007/3-540-29089-3\_14
[24] 10.1007/s00023-019-00801-7 · Zbl 1428.35586 · doi:10.1007/s00023-019-00801-7
[25] 10.1007/s00029-021-00733-3 · Zbl 1496.35296 · doi:10.1007/s00029-021-00733-3
[26] 10.1088/0951-7715/22/1/R01 · Zbl 1152.35300 · doi:10.1088/0951-7715/22/1/R01
[27] 10.1002/cpa.3160180408 · Zbl 0141.28902 · doi:10.1002/cpa.3160180408
[28] ; Guderley, G., Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302, 1942 · Zbl 0061.45804
[29] 10.1142/S0219891616500016 · Zbl 1346.35005 · doi:10.1142/S0219891616500016
[30] 10.1002/cpa.3160270307 · Zbl 0302.35064 · doi:10.1002/cpa.3160270307
[31] ; Klainerman, Sergiu, Long time behaviour of solutions to nonlinear wave equations, Proceedings of the International Congress of Mathematicians, II, 1209, 1984 · Zbl 0581.35052
[32] 10.1215/S0012-7094-03-11711-1 · Zbl 1031.35091 · doi:10.1215/S0012-7094-03-11711-1
[33] 10.1063/1.1704154 · Zbl 0135.15101 · doi:10.1063/1.1704154
[34] 10.1016/0022-0396(79)90082-2 · Zbl 0379.35048 · doi:10.1016/0022-0396(79)90082-2
[35] 10.1007/s00222-018-0799-8 · Zbl 1409.35142 · doi:10.1007/s00222-018-0799-8
[36] 10.1142/S0219891620500010 · Zbl 1441.35190 · doi:10.1142/S0219891620500010
[37] 10.1007/s00222-021-01067-9 · Zbl 1487.35353 · doi:10.1007/s00222-021-01067-9
[38] 10.4007/annals.2022.196.2.3 · Zbl 1497.35384 · doi:10.4007/annals.2022.196.2.3
[39] 10.4007/annals.2022.196.2.4 · Zbl 1497.35385 · doi:10.4007/annals.2022.196.2.4
[40] 10.1007/s40818-018-0046-z · Zbl 1400.35181 · doi:10.1007/s40818-018-0046-z
[41] 10.1007/s00222-016-0676-2 · Zbl 1362.35248 · doi:10.1007/s00222-016-0676-2
[42] 10.1007/BF01207258 · Zbl 0619.35073 · doi:10.1007/BF01207258
[43] ; Riemann, Bernhard, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. König. Gesellschaft Wissen. Göttingen, 8, 43, 1860
[44] ; Sedov, L. I., Similarity and dimensional methods in mechanics, 1982 · Zbl 0526.76002
[45] 10.1007/BF01210741 · Zbl 0606.76088 · doi:10.1007/BF01210741
[46] 10.1090/surv/214 · Zbl 1373.35005 · doi:10.1090/surv/214
[47] 10.1007/s40818-017-0042-8 · Zbl 1400.35182 · doi:10.1007/s40818-017-0042-8
[48] 10.1007/s00205-019-01411-7 · Zbl 1428.35334 · doi:10.1007/s00205-019-01411-7
[49] 10.2140/apde.2020.13.93 · Zbl 1439.35094 · doi:10.2140/apde.2020.13.93
[50] 10.1007/s40818-016-0014-4 · Zbl 1402.35173 · doi:10.1007/s40818-016-0014-4
[51] 10.4007/annals.2022.195.2.3 · Zbl 1496.35304 · doi:10.4007/annals.2022.195.2.3
[52] 10.1137/21M1399348 · Zbl 1475.35207 · doi:10.1137/21M1399348
[53] 10.1017/S002776300000893X · Zbl 1133.35374 · doi:10.1017/S002776300000893X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.