×

Finch-Skea star model in \(f(R, T)\) theory of gravity. (English) Zbl 07834277

Summary: This work discusses about the existence of compact star model in the context of \(f(R, T)\) gravity with \(R\) as the Ricci scalar and \(T\) as the trace of energy-momentum tensor \(T_{\mu\nu}\). The model has been developed by considering the spherically symmetric spacetime consisting of isotropic fluid with \(f(R, T) = R + 2\beta T\) with \(\beta\) be the coupling parameter. The corresponding field equations are solved by choosing the well-known Finch-Skea ansatz [M. R. Finch and J. E. F. Skea, A realistic stellar model based on an ansatz of Duorah and Ray, Class. Quantum Gravity6(4) (1989) 467-476]. For spacetime continuity, we elaborate the boundary conditions by considering the exterior region as Schwarzschild metric. The unknown constants appearing in the solution are evaluated for the compact star PSR J 1614-2230 for different values of coupling constant. The physical properties of the model, e.g. matter density, pressure, stability, etc. have been discussed both analytically and graphically. This analysis showed that the geometry and matter are compatible with each other as well as the model is in stable equilibrium in the context of \(f(R, T)\) modified gravity.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
85A05 Galactic and stellar dynamics
85A15 Galactic and stellar structure

References:

[1] Harko, T., Lobo, F. S. N., Nojiri, S. and Odintsov, S. D., \(f(R,T)\) gravity, Phys. Rev. D84 (2011) 024020.
[2] Benvenuto, O. G. and Lugones, G., The phase transition from nuclear matter to quark matter during proto-neutron star evolution, Mon. Not. R. Astron. Soc.304 (1999) L25.
[3] Annala, E., Gorda, T., Kurkela, A., Nättilä, J. and Vuorinen, A., Evidence for quark-matter cores in massive neutron stars, Nat. Phys.16(9) (2020) 907-910.
[4] S. D. Odintsov and V. K. Oikonomou, Neutron stars in scalar-tensor gravity with Higgs scalar potential, preprint (2021), arXiv:2104.01982. · Zbl 1494.85004
[5] Odintsov, S. D. and Oikonomou, V. K., Neutron stars phenomenology with scalar-tensor inflationary attractors, Phys. Dark Universe32 (2021) 100805.
[6] Harko, T., Lobo, F. S. N., Mak, M. K. and Sushkov, S. V., Structure of neutron, quark and exotic stars in Eddington-inspired Born-Infeld gravity, Phys. Rev. D88 (2013) 044032.
[7] Nojiri, S., Odintsov, S. D. and Oikonomou, V. K., Modified gravity theories on a Nutshell: Inflation, bounce and late-time evolution, Phys. Rep.692 (2017) 1-104. · Zbl 1370.83084
[8] Astashenok, A. V., Capozziello, S., Odintsov, S. D. and Oikonomou, V. K., Causal limit of neutron star maximum mass in \(f(R)\) gravity in view of GW190814, Phys. Lett. B816 (2021) 136222.
[9] Astashenok, A. V., Capozziello, S., Odintsov, S. D. and Oikonomou, V. K., Extended gravity description for the GW190814 supermassive neutron star, Phys. Lett. B811 (2020) 135910. · Zbl 1475.85007
[10] Lau, S. Y., Leung, P. T. and Lin, L. M., Tidal deformations of compact stars with crystalline quark matter, Phys. Rev. D95(10) (2017) 101302.
[11] Deb, D., Rahaman, F., Ray, S. and Guha, B. K., Anisotropic strange stars under simplest minimal matter-geometry coupling in the \(f(R,T)\) gravity, Phys. Rev. D97(8) (2018) 084026. · Zbl 1530.85001
[12] Lopes, I. and Panotopoulos, G., Dark matter admixed strange quark stars in the Starobinsky model, Phys. Rev. D97(2) (2018) 024030.
[13] Abbas, G., Qaisar, S., Jawad, A., Qaisar, S. and Jawad, A., Strange stars in \(f(T)\) gravity With MIT bag model, Astrophys. Space Sci.359(2) (2015) 57.
[14] Moraes, P. H. R. S., Arbañil, J. D. V. and Malheiro, M., Stellar equilibrium configurations of compact stars in \(f(R,T)\) gravity, J. Cosmol. Astropart. Phys.6 (2016) 5.
[15] Sharif, M. and Siddiqa, A., Study of stellar structures in f(R, T) gravity, Int. J. Mod. Phys. D27(7) (2018) 1850065. · Zbl 1403.83063
[16] Sharif, M. and Waseem, A., Anisotropic quark stars in \(f(R,T)\) gravity, Eur. Phys. J. C78(10) (2018) 868. · Zbl 1398.83088
[17] Biswas, S., Shee, D., Guha, B. K. and Ray, S., Anisotropic strange star with Tolman-Kuchowicz metric under \(f(R,T)\) gravity, Eur. Phys. J. C80(2) (2020) 175.
[18] Bhar, P., Charged strange star with Krori-Barua potential in f(R, T) gravity admitting Chaplygin equation of state, Eur. Phys. J. Plus135(9) (2020) 757.
[19] Zubair, M., Javaid, H., Azmat, H. and Gudekli, E., Relativistic stellar model in f(R, T) gravity using karmarkar condition, New Astron.88 (2021) 101610.
[20] Rej, P. and Bhar, P., Charged strange star in f(R, T) gravity with linear equation of state, Astrophys. Space Sci.366(4) (2021) 35.
[21] Noureen, I., Usman-ul-Haq and Mardan, S. A., Impact of f(R, T) gravity in evolution of charged viscous fluids, Int. J. Mod. Phys. D30(4) (2021) 2150027. · Zbl 1466.83086
[22] Zubair, M. and Azmat, H., Complexity analysis of cylindrically symmetric self-gravitating dynamical system in f(R, T) theory of gravity, Phys. Dark Universe28 (2020) 100531.
[23] Bhatti, M. Z., Yousaf, Z. and Yousaf, M., Stability of self-gravitating anisotropic fluids in f(R, T) gravity, Phys. Dark Universe28 (2020) 100501. · Zbl 1443.83057
[24] Rej, P., Bhar, P. and Govender, M., Charged compact star in \(f(R,T)\) gravity in Tolman-Kuchowicz spacetime, Eur. Phys. J. C81(4) (2021) 316.
[25] Finch, M. R. and Skea, J. E. F., A realistic stellar model based on an ansatz of Duorah and Ray, Class. Quantum Gravity6(4) (1989) 467-476.
[26] Bhar, P., Strange star admitting Chaplygin equation of state in Finch-Skea spacetime, Astrophys. Space Sci.359(2) (2015) 41.
[27] Pandya, D. M., Thomas, V. O. and Sharma, R., Modified finch and Skea stellar model compatible with observational data, Astrophys. Space Sci.356(2) (2015) 285-292.
[28] Maharaj, S. D., Matondo, D. Kileba and Takisa, P. Mafa, A family of Finch and Skea relativistic stars, Int. J. Mod. Phys. D26(3) (2017) 1750014. · Zbl 1359.83018
[29] Landau, L. Davidovich, The Classical Theory of Fields, Vol. 2 (Elsevier, 2013).
[30] Koivisto, T., Covariant conservation of energy momentum in modified gravities, Class. Quantum Grav.23 (2006) 4289-4296. · Zbl 1096.83056
[31] Bhar, P., Rahaman, F., Biswas, R. and Fatima, H. I., Exact solution of a (2+1)-dimensional anisotropic star in finch and Skea spacetime, Commun. Theor. Phys.62(2) (2014) 221-226. · Zbl 1297.83007
[32] Sharma, R. and Ratanpal, B. S., Relativistic stellar model admitting a quadratic equation of state, Int. J. Mod. Phys. D22(13) (2013) 1350074. · Zbl 1278.83016
[33] Zubair, M., Ditta, A. and Waheed, S., Anisotropic stellar Finch-Skea structures satisfying Karmarkar condition in a teleparallel framework involving off-diagonal tetrad, Eur. Phys. J. Plus136(5) (2021) 508.
[34] Shamir, M. Farasat, Mustafa, G. and Ahmad, M., Charged anisotropic Finch-Skea-Bardeen spheres, Nucl. Phys. B967 (2021) 115418. · Zbl 07408627
[35] Bhar, P., Singh, K. Newton, Rahaman, F., Pant, N. and Banerjee, S., A charged anisotropic well-behaved Adler-Finch-Skea solution satisfying Karmarkar condition, Int. J. Mod. Phys. D26(8) (2017) 1750078. · Zbl 1371.85006
[36] Gangopadhyay, T., Ray, S., Li, X.-D., Dey, J. and Dey, M., Strange star equation of state fits the refined mass measurement of 12 pulsars and predicts their radii, Mon. Not. R. Astron. Soc.431 (2013) 3216-3221.
[37] Buchdahl, H. A., General relativistic fluid spheres, Phys. Rev.116 (1959) 1027. · Zbl 0092.20802
[38] Straumann, N., General Relativity and Relativistic Astrophysics (Springer, New York, 1984).
[39] Boehmer, C. G. and Harko, T., Bounds on the basic physical parameters for anisotropic compact general relativistic objects, Class. Quantum Gravity23 (2006) 6479-6491. · Zbl 1117.83058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.