×

Weingarten flows in Riemannian manifolds. (English) Zbl 07783567

The author considers a family of immersed hypersurfaces in Riemannian manifolds which satisfies the evolution equation \[ \frac{\partial F}{\partial t}(p,t)=W(p,t)N(p,t), \] where \(F:M^{n}\rightarrow\bar{M}^{n+1}\)is the immersion, \(N\) is the unit normal and \(W\) is a suitable function of the principal curvatures of the hypersurface. Some existence results are proved when the initial hypersurface is isoparametric and the ambient space is a space form or a rank-one symmetric space of noncompact type. When \(W\) is an odd function, the author proves the avoidance principle and that embedding is preserved, using Hamilton’s trick.

MSC:

53E10 Flows related to mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] J. Berndt and J. C. Díaz-Ramos, Homogeneous hypersurfaces in complex hyperbolic spaces, Geom. Dedicata 138 (2009), 129-150. Digital Object Identifier: 10.1007/s10711-008-9303-8 Google Scholar: Lookup Link zbMATH: 1169.53041 MathSciNet: MR2469992 · Zbl 1169.53041 · doi:10.1007/s10711-008-9303-8
[2] J. Berndt, F. Tricerri, and L. Vanhecke, Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lect. Notes Math. 1598, Springer-Verlag, Berlin 1995. Digital Object Identifier: 10.1007/BFb0076902 Google Scholar: Lookup Link MathSciNet: MR1340192 · Zbl 0818.53067 · doi:10.1007/BFb0076902
[3] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Pure Appl. Math. XV, Academic Press, New York-London, 1964. MathSciNet: MR0169148 · Zbl 0132.16003
[4] T. E. Cecil and P. J. Ryan, Geometry of hypersurfaces, Springer Monogr. Math., Springer-Verlag, Berlin, 2015. Digital Object Identifier: 10.1007/978-1-4939-3246-7 Google Scholar: Lookup Link MathSciNet: MR3408101 · Zbl 1331.53001 · doi:10.1007/978-1-4939-3246-7
[5] I. M. Gel’fand, Lectures on Linear Algebra, Interscience Tracts Pure Appl. Math. No. 9, Interscience Publishers, New York-London (1961). MathSciNet: MR0122819
[6] R. S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153-179. MathSciNet: MR0862046 · Zbl 0628.53042
[7] G. Huisken and A. Polden, “Geometric evolution equations for hypersurfaces” in Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lect. Notes Math. 1713, Springer, Berlin, 1999, 45-84. Digital Object Identifier: 10.1007/BFb0092669 Google Scholar: Lookup Link MathSciNet: MR1731639 · Zbl 0942.35047 · doi:10.1007/BFb0092669
[8] S. Kim, Y. Nikolayevsky, and J. Park, Einstein hypersurfaces of the Cayley projective plane. Differential Geom. Appl. 69 (2020), 101594, 6. Digital Object Identifier: 10.1016/j.difgeo.2020.101594 Google Scholar: Lookup Link zbMATH: 1435.53015 MathSciNet: MR4056219 · Zbl 1435.53015 · doi:10.1016/j.difgeo.2020.101594
[9] C. Mantegazza, Lecture Notes on Mean Curvature Flow, Progr. Math., Birkhäuser/Springer, Basel, 2011. Digital Object Identifier: 10.1007/978-3-0348-0145-4 Google Scholar: Lookup Link MathSciNet: MR2815949 · Zbl 1230.53002 · doi:10.1007/978-3-0348-0145-4
[10] H. F. Münzner, Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), no. 1, 57-71. Digital Object Identifier: 10.1007/BF01420281 Google Scholar: Lookup Link MathSciNet: MR0583825 · Zbl 0417.53030 · doi:10.1007/BF01420281
[11] H. F. Santos dos Reis and K. Tenenblat, The mean curvature flow by parallel hypersurfaces, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4867-4878. Digital Object Identifier: 10.1090/proc/14178 Google Scholar: Lookup Link MathSciNet: MR3856153 · Zbl 1402.53051 · doi:10.1090/proc/14178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.