×

Robust optimal estimation of location from discretely sampled functional data. (English) Zbl 07748350

Summary: Estimating location is a central problem in functional data analysis, yet most current estimation procedures either unrealistically assume completely observed trajectories or lack robustness with respect to the many kinds of anomalies one can encounter in the functional setting. To remedy these deficiencies we introduce the first class of optimal robust location estimators based on discretely sampled functional data. The proposed method is based on M-type smoothing spline estimation with repeated measurements and is suitable for both commonly and independently observed trajectories that are subject to measurement error. We show that under suitable assumptions the proposed family of estimators is minimax rate optimal both for commonly and independently observed trajectories and we illustrate its highly competitive performance and practical usefulness in a Monte-Carlo study and a real-data example involving recent Covid-19 data.
{© 2022 The Board of the Foundation of the Scandinavian Journal of Statistics.}

MSC:

62-XX Statistics

References:

[1] Adams, R. A., & Fournier, J. J. F. (2003). Sobolev spaces (2nd ed.). Elsevier/Academic Press. · Zbl 1098.46001
[2] Arcones, M. A. (2000). Asymptotic distribution of regression M‐estimators. Journal of Statistical Planning and Inference, 97, 235-261. · Zbl 1015.62012
[3] Bai, Z. D., & Wu, Y. (1994). Limiting behavior of M‐estimators of regression coefficients in high dimensional linear models I. Scale‐dependent case. Journal of Multivariate Analysis, 51, 211-239. · Zbl 0816.62025
[4] Cai, T. T., & Yuan, M. (2011). Optimal estimation of the mean function based on discretely sampled functional data: Phase transition. Annals of Statistics, 39, 2330-2355. · Zbl 1231.62040
[5] Cardot, H., Cénac, P., & Zitt, P. A. (2013). Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19, 18-43. · Zbl 1259.62068
[6] Chakraborty, A., & Chaudhuri, P. (2014). The spatial distribution in infinite dimensional spaces and related quantiles and depths. Annals of Statistics, 42, 1203-1231. · Zbl 1305.62141
[7] Cox, D. D. (1983). Asymptotics for M‐type smoothing splines. Annals of Statistics, 11, 530-551. · Zbl 0519.62034
[8] Crambes, C., Kneip, A., & Sarda, P. (2009). Smoothing splines estimators for functional linear regression. Annals of Statistics, 37, 35-72. · Zbl 1169.62027
[9] Cucker, F., & Smale, S. (2001). On the mathematical foundations of Learning. Bulletin of the American Mathematical Society, 39, 1-49. · Zbl 0983.68162
[10] Cuesta‐Albertos, J. A., & Fraiman, R. (2006). Impartial trimmed means for functional data. In R. Y.Liu (ed.), R.Serfling (ed.), & D.Souvaine (ed.) (Eds.), Data depth: Robust multivariate analysis, computational geometry and applications (pp. 121-146). American Mathematical Society.
[11] Cunningham, J., Eubank, R. L., & Hsing, T. (1991). M‐type smoothing splines with auxiliary scale estimation. Computational Statistics & Data Analysis, 11, 43-51. · Zbl 0850.62345
[12] deBoor, C. (2001). A practical guide to splines (Revised ed.). Springer. · Zbl 0987.65015
[13] Degras, D. A. (2008). Asymptotics for the nonparametric estimation of the mean function of a random process. Statistics & Probability Letters, 78, 2976-2980. · Zbl 1148.62027
[14] Degras, D. A. (2011). Simultaneous confidence bands for nonparametric regression with functional data. Statistica Sinica, 21, 1735-1765. · Zbl 1225.62052
[15] DeVore, R. A., & Lorentz, G. G. (1993). Constructive approximation. Springer. · Zbl 0797.41016
[16] Eggermont, P. P. B., & LaRiccia, V. N. (2009). Maximum penalized likelihood estimation, volume II: Regression. Springer. · Zbl 1184.62063
[17] Eubank, R. L. (1999). Nonparametric regression and spline smoothing (2nd ed.). CRC Press. · Zbl 0936.62044
[18] Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis: Theory and practice. Springer. · Zbl 1119.62046
[19] Fu, A., Narasimhan, B., & Boyd, S. (2020). CVXR: An R package for disciplined convex optimization. Journal of Statistical Software, 94, 1-34.
[20] Gervini, D. (2008). Robust functional estimation using the median and spherical principal components. Biometrika, 95, 587-600. · Zbl 1437.62469
[21] Hastie, T. J., Tibshirani, R. J., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer. · Zbl 1273.62005
[22] Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications. Springer. · Zbl 1279.62017
[23] Hsing, T., & Eubank, R. (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley. · Zbl 1338.62009
[24] Huber, P. J. (1979). Robust smoothing. In R. L.Launer (ed.) & G. N.Wilkinson (ed.) (Eds.), Robustness in statistics (pp. 33-47). Academic Press.
[25] Huber, P. J., & Ronchetti, E. M. (2009). Robust statistics (2nd ed.). Wiley. · Zbl 1276.62022
[26] Kalogridis, I. (2021). Asymptotics for M‐type smoothing splines with non‐smooth objective functions. TEST, 1-17. https://doi.org/10.1007/s11749‐021‐00782‐y · doi:10.1007/s11749‐021‐00782‐y
[27] Kokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. CRC Press. · Zbl 1411.62004
[28] Li, G., Peng, H., & Zhu, L. (2011). Nonconcave penalized M‐estimation with a diverging number of parameters. Statistica Sinica, 21, 391-419. · Zbl 1206.62036
[29] Li, Y., & Hsing, T. (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Annals of Statistics, 38, 3321-3351. · Zbl 1204.62067
[30] Lima, I. R., Cao, G., & Billor, N. (2019). M‐based simultaneous inference for the mean function of functional data. Annals of the Institute of Statistical Mathematics, 71, 577-598. · Zbl 1419.62110
[31] Liu, B., & Müller, H.‐G. (2009). Estimating derivatives for samples of sparsely observed functions, with application to online auction dynamics. Journal of the American Statistical Association, 104, 704-717. · Zbl 1388.62083
[32] Maronna, R. A. (2011). Robust ridge regression for high‐dimensional data. Technometrics, 53, 44-53.
[33] Maronna, R. A., & Yohai, V. J. (2013). Robust functional linear regression based on splines. Computational Statistics & Data Analysis, 65, 46-55. · Zbl 1471.62132
[34] Nychka, D., Martin, D., Haaland, P., & O’Connell, M. (1995). A nonparametric regression approach to syringe grading for quality improvement. Journal of the American Statistical Association, 90, 1171-1178. · Zbl 0864.62066
[35] Panaretos, V. M., & Kraus, D. (2012). Dispersion operators and resistant second‐order functional data analysis. Biometrika, 99, 813-832. · Zbl 1452.62991
[36] Ramsay, J. O. (1982). When the data are functions. Psychometrika, 47, 379-396. · Zbl 0512.62004
[37] Ramsay, J. O., & Dalzell, C. J. (1991). Some tools for functional data analysis. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 53, 539-561. · Zbl 0800.62314
[38] Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis. Wiley. · Zbl 1079.62006
[39] Rice, J. A., & Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 53, 233-243. · Zbl 0800.62214
[40] Schultz, M. H. (1970). Error bounds for polynomial spline interpolation. Mathematics of Computation, 24, 507-515. · Zbl 0216.23002
[41] Sinova, B., González‐Rodríguez, G., & Van Aelst, S. (2018). M‐estimators of location for functional data. Bernoulli, 24, 2328-2357. · Zbl 1440.62405
[42] van deGeer, S. (2000). Empirical processes in M‐estimation. Cambridge University Press. · Zbl 1179.62073
[43] van derVaart, A. W. (1998). Asymptotic statistics. Cambridge University Press. · Zbl 0910.62001
[44] van derVaart, A. W., & Wellner, J. A. (1996). Weak convergence and empirical processes. Springer. · Zbl 0862.60002
[45] Wahba, G. (1990). Spline models for observational data. SIAM. · Zbl 0813.62001
[46] Wei, Y., & He, X. (2006). Conditional growth charts. Annals of Statistics, 34, 2069-2097. · Zbl 1106.62049
[47] Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). CRC Press. · Zbl 1368.62004
[48] Wu, W. B. (2007). M‐estimation of linear models with dependent errors. Annals of Statistics, 35, 495-521. · Zbl 1117.62070
[49] Xiao, L. (2020). Asymptotic properties of penalized splines for functional data. Bernoulli, 26, 2847-2875. · Zbl 1465.62191
[50] Yao, F., Müller, H.‐G., & Wang, J.‐L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577-590. · Zbl 1117.62451
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.