×

Charmenability of arithmetic groups of product type. (English) Zbl 07569645

Let \(\Gamma\) be a countable group. The set of positive definite functions \(\varphi\) on \(\Gamma\) normalized with \(\varphi(e)=1\) is a compact convex \(\Gamma\)-set on \(\ell^\infty(\Gamma)\) with the weak-\(*\) topology. Thanks to the GNS construction, any such function is obtained as a matrix coefficient \(\varphi(g)=\langle \pi(g)u,u\rangle \) with \(u\) is a unit vector of a Hilbert space \(\mathcal{H}\) and \(\pi: \Gamma\to \mathrm{U}(\mathcal{H})\) is a unitary representation.
Amongst these positive definite functions, the ones invariant under conjugation are called characters. The set of characters is also a compact convex invariant subset. Examples are given by normalized traces of finite dimensional unitary representations.
In previous papers, the authors introduced two properties for \(\Gamma\) related to its characters. Let us recall that the amenable radical of \(\Gamma\) is the largest amenable normal subgroup of \(\Gamma\).
The group \(\Gamma\) is charmenable if it satisfies the following two properties:
1.
Every nonempty \(\Gamma\)-invariant weak-\(\ast\) compact convex subset of the set of positive definite functions contains a character.
2.
Every extremal character is either supported on the amenable radical of \(\Gamma\) or its GNS von Neumann algebra is amenable.

The group \(\Gamma\) is charfinite if it is charmenable and moreover it satisfies the following conditions:
1.
The amenable radical of \(\Gamma\) is finite.
2.
\(\Gamma\) has a finite number of isomorphism classes of unitary representations in each given finite dimension.
3.
Every extremal character is either supported on the amenable radical or its GNS von Neumann algebra is finite dimensional.

The second and the third author proved that lattices in higher rank connected simple Lie groups with finite center are charfinite [Publ. Math., Inst. Hautes Étud. Sci. 133, 1–46 (2021; Zbl 1504.22009)]. The first author and A. Furman also proved that irreducible lattices in products of (at least two) simple algebraic groups are charmenable (resp. charfinite if one of the factors has property (T)) [in: Proceedings of the international congress of mathematicians (ICM 2014), Seoul, Korea, August 13–21, 2014. Vol. III: Invited lectures. Seoul: KM Kyung Moon Sa. 71–96 (2014; Zbl 1378.37004); Compos. Math. 156, No. 1, 158–178 (2020; Zbl 1435.22010)].
In this paper, they pursue the study of charmenability of lattices in any characteristic. Their main result is the following one. Let \(k\) be a local field. Let \(\mathrm{G}\) be an almost \(k\)-simple connected algebraic \(k\)-group such that rank at least \(2\). Then every lattice of \(\mathrm{G}(k)\) is charfinite.
From that result, they deduce consequences for associated von Neumann algebras, invariant random subgroups and uniformly recurrent subgroups.

MSC:

22E40 Discrete subgroups of Lie groups
22D10 Unitary representations of locally compact groups
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
46L10 General theory of von Neumann algebras
46L30 States of selfadjoint operator algebras

References:

[1] Abert, M.; Bergeron, N.; Biringer, I.; Gelander, T.; Nikolov, N.; Raimbault, J.; Samet, I., On the growth of \(L^2\)-invariants for sequences of lattices in Lie groups, Ann. Math., 185, 711-790 (2017) · Zbl 1379.22006 · doi:10.4007/annals.2017.185.3.1
[2] Abert, M.; Glasner, Y.; Virag, B., Kesten’s theorem for invariant random subgroups, Duke Math. J., 163, 465-488 (2014) · Zbl 1344.20061 · doi:10.1215/00127094-2410064
[3] Alekseev, V., Brugger, R.: On invariant random positive definite functions. arXiv:1804.10471
[4] Bader, U., Furman, A.: Boundaries, rigidity of representations, and Lyapunov exponents. Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. III, 71-96, Kyung Moon Sa, Seoul (2014) · Zbl 1378.37004
[5] Bader, U.; Furman, A., Super-rigidity and non-linearity for lattices in products, Compos. Math., 156, 158-178 (2020) · Zbl 1435.22010 · doi:10.1112/S0010437X19007607
[6] Bader, U.; Gelander, T., Equicontinuous actions of semisimple groups, Groups Geom. Dyn., 11, 1003-1039 (2017) · Zbl 1376.22013 · doi:10.4171/GGD/420
[7] Bader, U.; Shalom, Y., Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., 163, 415-454 (2006) · Zbl 1085.22005 · doi:10.1007/s00222-005-0469-5
[8] Bekka, B., Amenable unitary representations of locally compact groups, Invent. Math., 100, 383-401 (1990) · Zbl 0702.22010 · doi:10.1007/BF01231192
[9] Bekka, B., Operator-algebraic superridigity for \(\operatorname{SL}_n(\mathbb{Z}), n \ge 3\), Invent. Math., 169, 401-425 (2007) · Zbl 1135.22009 · doi:10.1007/s00222-007-0050-5
[10] Bekka, B., Character rigidity of simple algebraic groups, Math. Ann., 378, 1223-1243 (2020) · Zbl 1511.20182 · doi:10.1007/s00208-020-02061-x
[11] Bekka, B., Francini, C.: Characters of algebraic groups over number fields. arXiv:2002.07497 · Zbl 1448.37036
[12] Bekka, B.; Valette, A., Kazhdan’s property and amenable representations, Math. Z., 212, 293-299 (1993) · Zbl 0789.22006 · doi:10.1007/BF02571659
[13] Borel, A.: Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer, New York. xii+288 pp (1991) · Zbl 0726.20030
[14] Boutonnet, R.; Houdayer, C., Stationary characters on lattices of semisimple Lie groups, Publ. Math. Inst. Hautes Études Sci., 133, 1-46 (2021) · Zbl 1504.22009 · doi:10.1007/s10240-021-00122-8
[15] Burger, M.; Mozes, S., Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math., 92, 151-194 (2001) · Zbl 1007.22013 · doi:10.1007/BF02698916
[16] Creutz, D., Peterson, J.: Character rigidity for lattices and commensurators. arXiv:1311.4513 · Zbl 1375.37007
[17] Furstenberg, H.: Stiffness of group actions. Lie groups and ergodic theory (Mumbai, 1996), 105-117, Tata Inst. Fund. Res. Stud. Math., 14, Tata Inst. Fund. Res., Bombay (1998) · Zbl 0942.22006
[18] Gelander, T.: A lecture on invariant random subgroups. New directions in locally compact groups, 186-204, London Math. Soc. Lecture Note Ser., 447, Cambridge Univ. Press, Cambridge (2018) · Zbl 1400.43003
[19] Glasner, E., Weiss, B.: Uniformly recurrent subgroups. Recent trends in ergodic theory and dynamical systems, 63-75, Contemp. Math., 631, Amer. Math. Soc., Providence, RI (2015) · Zbl 1332.37014
[20] Haagerup, U., The standard form of von Neumann algebras, Math. Scand., 37, 271-283 (1975) · Zbl 0304.46044 · doi:10.7146/math.scand.a-11606
[21] Hartman, Y., Kalantar, M.: Stationary \({\operatorname{C}}^*\)-dynamical systems. To appear in J. Eur. Math. Soc. (JEMS) arXiv:1712.10133
[22] Ikunishi, A., The \(W^*\)-dynamical system associated with a \(C^*\)-dynamical system, and unbounded derivations, J. Funct. Anal., 79, 1-8 (1988) · Zbl 0674.46036 · doi:10.1016/0022-1236(88)90025-0
[23] Omer Lavi, A.L.: Characters of the group \(\operatorname{EL}_d(R)\) for a commutative Noetherian ring \(R\). arXiv:2007.15547
[24] Margulis, G.A.: Discrete subgroups of semisimple Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17. Springer, Berlin. x+388 pp (1991) · Zbl 0732.22008
[25] Nevo, A.; Zimmer, RJ, Homogenous projective factors for actions of semi-simple Lie groups, Invent. Math., 138, 229-252 (1999) · Zbl 0936.22007 · doi:10.1007/s002220050377
[26] Nevo, A.; Zimmer, RJ, A structure theorem for actions of semisimple Lie groups, Ann. Math., 156, 565-594 (2002) · Zbl 1012.22038 · doi:10.2307/3597198
[27] Peterson, J.: Character rigidity for lattices in higher-rank groups. Preprint (2014)
[28] Peterson, J.; Thom, A., Character rigidity for special linear groups, J. Reine Angew. Math., 716, 207-228 (2016) · Zbl 1347.20051
[29] Ruane, K., Dynamics of the action of a CAT(0) group on the boundary, Geom. Dedicata, 84, 81-99 (2001) · Zbl 0984.20027 · doi:10.1023/A:1010301824765
[30] Segal, IE; von Neumann, J., A theorem on unitary representations of semisimple Lie groups, Ann. Math., 52, 509-517 (1950) · Zbl 0041.36313 · doi:10.2307/1969429
[31] Shalom, Y., Rigidity of commensurators and irreducible lattices, Invent. Math., 141, 1-54 (2000) · Zbl 0978.22010 · doi:10.1007/s002220000064
[32] Takesaki, M.: Theory of operator algebras. \({\rm II}\). Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer, Berlin. xxii+518 pp (2003) · Zbl 1059.46031
[33] Takesaki, M.: Theory of operator algebras. \({\rm III}\). Encyclopaedia of Mathematical Sciences, 127. Operator Algebras and Non-commutative Geometry, 8. Springer, Berlin. xxii+548 pp (2003) · Zbl 1059.46032
[34] Wang, PS, On isolated points in the dual spaces of locally compact groups, Math. Ann., 218, 19-34 (1975) · Zbl 0332.22009 · doi:10.1007/BF01350065
[35] Weil, A., Remarks on the Cohomology of Groups, Ann. Math., 80, 149-157 (1964) · Zbl 0192.12802 · doi:10.2307/1970495
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.