×

Worst-case expected shortfall with univariate and bivariate marginals. (English) Zbl 07362321

Summary: Computing and minimizing the worst-case bound on the expected shortfall risk of a portfolio given partial information on the distribution of the asset returns is an important problem in risk management. One such bound that been proposed is for the worst-case distribution that is “close” to a reference distribution where closeness in distance among distributions is measured using \(\phi \)-divergence. In this paper, we advocate the use of such ambiguity sets with a tree structure on the univariate and bivariate marginal distributions. Such an approach has attractive modeling and computational properties. From a modeling perspective, this provides flexibility for risk management applications where there are many more choices for bivariate copulas in comparison with multivariate copulas. Bivariate copulas form the basis of the nested tree structure that is found in vine copulas. Because estimating a vine copula is fairly challenging, our approach provides robust bounds that are valid for the tree structure that is obtained by truncating the vine copula at the top level. The model also provides flexibility in tackling instances when the lower dimensional marginal information is inconsistent that might arise when multiple experts provide information. From a computational perspective, under the assumption of a tree structure on the bivariate marginals, we show that the worst-case expected shortfall is computable in polynomial time in the input size when the distributions are discrete. The corresponding distributionally robust portfolio optimization problem is also solvable in polynomial time. In contrast, under the assumption of independence, the expected shortfall is shown to be \(\sharp\)P-hard to compute for discrete distributions. We provide numerical examples with simulated and real data to illustrate the quality of the worst-case bounds in risk management and portfolio optimization and compare it with alternate probabilistic models such as vine copulas and Markov tree distributions.

MSC:

90Cxx Mathematical programming

References:

[1] Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insurance Math. Econom. 44(2):182-198.Crossref, Google Scholar · Zbl 1165.60009 · doi:10.1016/j.insmatheco.2007.02.001
[2] Bayraksan G, Love DK (2015) Data-driven stochastic programming using phi-divergences. The Operations Research Revolution, TutORials in Operations Research (Catonsville, MD), 1-19.Google Scholar
[3] Bedford T, Cooke RM (2002) Vines—A new graphical model for dependent random variables. Ann. Statist. 30(4):1031-1068.Crossref, Google Scholar · Zbl 1101.62339 · doi:10.1214/aos/1031689016
[4] Ben-Tal A, den Hertog D, Waegenaere AD, Melenberg B, Rennen G (2013) Robust solutions of optimization problems affected by uncertain probabilities. Management Sci. 59(2):341-357.Link, Google Scholar
[5] Brechmann EC, Czado C, Aas K (2012) Truncated regular vines in high dimensions with application to financial data. Canadian J. Statist. 40(1):68-85.Crossref, Google Scholar · Zbl 1274.62381 · doi:10.1002/cjs.10141
[6] Calafiore GC (2007) Ambiguous risk measures and optimal robust portfolios. SIAM J. Optim. 18(3):853-877.Crossref, Google Scholar · Zbl 1154.91022 · doi:10.1137/060654803
[7] Chandrashekaran V, Srebro N, Harsha P (2008) Complexity of inference in graphical models. Proc. 24th Conf. Uncertainty Artificial Intelligence (AUAI Press, Arlington, VA), 70-78.Google Scholar
[8] Chow CK, Liu CN (1968) Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory 14(3):462-467.Crossref, Google Scholar · Zbl 0165.22305 · doi:10.1109/TIT.1968.1054142
[9] Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3):595-612.Link, Google Scholar · Zbl 1228.90064
[10] Dhaene J, Denuit M, Goovaerts MJ, Kaas R, Vyncke D (2002) The concept of comonotonicity in actuarial science and finance: Theory. Insurance Math. Econom. 31(1):3-33.Crossref, Google Scholar · Zbl 1051.62107 · doi:10.1016/S0167-6687(02)00134-8
[11] Dissmann JF, Brechmann EC, Czado C, Kurowicka D (2013) Selecting and estimating regular vine copulae and application to financial returns. Comput. Statist. Data Anal. 59:52-69.Crossref, Google Scholar · Zbl 1400.62114 · doi:10.1016/j.csda.2012.08.010
[12] Doan XV, Natarajan K (2012) On the complexity of nonoverlapping multivariate marginal bounds for probabilistic combinatorial optimization problems. Oper. Res. 60(1):138-149.Link, Google Scholar · Zbl 1245.90099
[13] Doan XV, Li X, Natarajan K (2015) Robustness to dependency in portfolio optimization using overlapping marginals. Oper. Res. 63(6):1468-1488.Link, Google Scholar · Zbl 1347.91227
[14] Dupacova J (1986) Stability in stochastic programming with recourse: Contaminated distributions. Prékopa A, Wets RJB, eds. Stochastic Programming 84, Part I, Mathematical Programming Studies, vol. 27 (Springer, Berlin, Heidelberg), 133-144.Crossref, Google Scholar · Zbl 0594.90068 · doi:10.1007/BFb0121117
[15] Dyer ME, Frieze AM (1988) On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17(5):967-974.Crossref, Google Scholar · Zbl 0668.68049 · doi:10.1137/0217060
[16] El Ghaoui L, Oks M, Oustry F (2003) Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Oper. Res. 51(4):543-556.Link, Google Scholar · Zbl 1165.91397
[17] Embrechts P, Puccetti G (2006) Bounds for functions of multivariate risks. J. Multivariate Anal. 97(2):526-547.Crossref, Google Scholar · Zbl 1089.60016 · doi:10.1016/j.jmva.2005.04.001
[18] Embrechts P, Puccetti G, Ruschendorf L, Wang R, Beleraj A (2014) An academic response to Basel 3.5. Risks 2(1):25-58.Crossref, Google Scholar · doi:10.3390/risks2010025
[19] Esfahani P, Kuhn D (2018) Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. Math. Programming 171(1-2):115-166.Crossref, Google Scholar · Zbl 1433.90095 · doi:10.1007/s10107-017-1172-1
[20] Hanasusanto GA, Kuhn D, Wiesemann W (2016) A comment on “computational complexity of stochastic programming problems. Math. Programming 159(1-2):557-569.Crossref, Google Scholar · Zbl 1345.90063 · doi:10.1007/s10107-015-0958-2
[21] Joe H (1997) Multivariate Models and Dependence Concepts (Chapman and Hall/CRC, New York).Google Scholar · Zbl 0990.62517
[22] Kleinberg RJ, Tardos E (2010) Allocating bandwidth for bursty connections. SIAM J. Comput. 30(1):191-217.Crossref, Google Scholar · Zbl 0979.05098 · doi:10.1137/S0097539797329142
[23] Klein Haneveld WK, van der Vlerk MH (2006) Integrated chance constraints: Reduced forms and an algorithm. Comput. Management Sci. 3(4):245-269.Crossref, Google Scholar · Zbl 1136.90424 · doi:10.1007/s10287-005-0007-3
[24] Lauritzen SL (1996) Graphical Models, Oxford Statistical Science Series 17 (Clarendon Press, New York).Google Scholar · Zbl 0907.62001
[25] Low RKY, Alcock J, Faff R, Brailsford T (2013) Canonical vine copulas in the context of modern portfolio management: Are they worth it? J. Banking Finance 37(8):3085-3099.Crossref, Google Scholar · doi:10.1016/j.jbankfin.2013.02.036
[26] Mantegna RN (1999) Hierarchical structure in financial markets. Eur. Phys. J. B. 11:193-197.Crossref, Google Scholar · doi:10.1007/s100510050929
[27] Natarajan MSK, Uichanco J (2010) Tractable robust expected utility and risk models for portfolio optimization. Math. Finance 20(4):695-731.Crossref, Google Scholar · Zbl 1232.91633 · doi:10.1111/j.1467-9965.2010.00417.x
[28] Pardo L (2006) Statistical Inference Based on Divergence Measures (Chapman and Hall/CRC, Boca Raton, FL).Google Scholar · Zbl 1118.62008
[29] Pitowsky I (1991) Correlation polytopes: Their geometry and complexity. Math. Programming 50(1-3):395-414.Crossref, Google Scholar · Zbl 0741.90054 · doi:10.1007/BF01594946
[30] Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J. Banking Finance 26(7):1443-1471.Crossref, Google Scholar · doi:10.1016/S0378-4266(02)00271-6
[31] Roughgarden T, Kearns M (2013) Marginals-to-models reducibility. Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ, eds. Proc. 26th Internat. Conf. Neural Inform. Processing Systems, 1043-1051.Google Scholar
[32] Ruschendorf L (1983) Solution of a statistical optimization problem by rearrangement method. Metrika 30(1):55-61.Crossref, Google Scholar · Zbl 0535.62008 · doi:10.1007/BF02056901
[33] Shapiro DD A, Ruszczynski A (2009) Lectures on Stochastic Programming: Modeling and Theory, MPS-SIAM Series on Optimization (SIAM, Philadelphia).Google Scholar · Zbl 1183.90005
[34] Sion M (1958) On general minimax theorems. Pacific J. Math. 8:171-176.Crossref, Google Scholar · Zbl 0081.11502 · doi:10.2140/pjm.1958.8.171
[35] Sklar A (1959) Fonctions de repartition a n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8:229-231.Google Scholar · Zbl 0100.14202
[36] Valiant LG (1979) The complexity of computing the permanent. Theoret. Comput. Sci. 8(2):189-201.Crossref, Google Scholar · Zbl 0415.68008 · doi:10.1016/0304-3975(79)90044-6
[37] Vorobev NN (1962) Consistent families of measures and their extensions. Theory Probab. Appl. 7(2):147-163.Crossref, Google Scholar · doi:10.1137/1107014
[38] Wainwright MJ, Jordan MI (2008) Graphical models, exponential families, and variational inference. Foundations Trends Machine Learn. 1(1-2):1-305.Google Scholar · Zbl 1193.62107
[39] Zhu S, Fukushima M (2009) Worst-case conditional value-at-risk with application to robust portfolio management. Oper. Res. 57(5):1155-1168.Link, Google Scholar · Zbl 1233.91254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.