Skip to main content
Log in

A Kadomtsev–Petviashvili Hierarchy Driven by Equation Manifolds

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The fact that (formally integrable) differential equations determine sub-bundles of appropriate infinite jet bundles allows us to introduce a ‘‘driven’’ Kadomtsev–Petviashvili (KP) hierarchy. We solve this hierarchy and we observe, as an application, that each solution to the KdV equation determines smooth solutions to our full KP hierarchy, and that these solutions are also smooth with respect to the ‘‘seed’’ (or initial) corresponding KdV solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. N. Gusyatnikova, A. V. Samokhin, V. S. Titov, A. M. Vinogradov, and V. A. Yumaguzhin, ‘‘Symmetries and conservation laws of Kadomtsev–Pogutse equations (their computation and first applications), Symmetries of partial differential equations, Part I,’’ Acta Applic. Math. 15, 23–64 (1989).

    Article  MATH  Google Scholar 

  2. I. M. Anderson, ‘‘Introduction to the variational bicomplex,’’ Contemp. Math. 132, 51–73 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. I. M. Anderson and N. Kamran, ‘‘Conservation laws and the variational bicomplex for second-order scalar hyperbolic equations in the plane,’’ Acta Applic. Math. 41, 135–144 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. I. M. Anderson and N. Kamran, ‘‘The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane,’’ Duke Math. J. 87, 265–319 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  5. I. M. Anderson, N. Kamran, and P. J. Olver, ‘‘Internal, external and generalized symmetries,’’ Adv. Math. 100, 53–100 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal (Gauthier-Villars, Paris, 1887).

    MATH  Google Scholar 

  7. L. A. Dickey, Soliton Equations and Hamiltonian Systems, Vol. 26 of Advanced Series in Mathematical Physics (World Scientific, River Edge, NJ, 2003).

  8. A. Eslami Rad, J.-P. Magnot, and E. G. Reyes, ‘‘The Cauchy problem of the Kadomtsev–Petviashvili hierarchy with arbitrary coefficient algebra,’’ J. Nonlin. Math. Phys. 24 (suppl. 1.), 103–120 (2017).

    MathSciNet  MATH  Google Scholar 

  9. N. Goldammer, J.-P. Magnot, and K. Welker, ‘‘On diffeologies from infinite dimensional geometry to PDE constrained optimization,’’ in Proceedings of the Special Session on Recent Advances in Diffeologies and their Applications, AMS-EMS-SMF congress, Grenoble, July 2022, Contemp. Math. (in press).

  10. H. Goldschmidt, ‘‘Integrability criteria for systems of nonlinear partial differential equations,’’ J. Differ. Geom. 1, 269–307 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Goursat, Leçons sur l’intégration des équations aux dérivées partielles du second ordre, deux variables indépendantes (Hermann, Paris, 1896–1898).

  12. P. Iglesias-Zemmour, Diffeology, Vol. 185 of Mathematical Surveys and Monographs (Am. Math. Soc., Providence, RI, 2013).

  13. I. S. Krasil’shchik, V. V. Lychagin, and A. M. Vinogradov, The Geometry of Jet Spaces and Non-Linear Differential Equations (Gordon and Breach Sci., New York, 1985).

    Google Scholar 

  14. I. S. Krasil’shchik and A. M. Vinogradov, Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Vol. 182 of Translations of Mathematical Monographs (AMS, Providence, 1999).

  15. B. Kupershmidt, KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems, Vol. 78 of AMS Mathematical Surveys and Monographs (AMS, Providence, 2000).

  16. S. Lie, Gesammelte Abhandlungen (Aschehoug, Teubner, Leipzig, Oslo, 1922–1937), Vols. 1–6.

  17. S. Majid, ‘‘Matched pairs of Lie groups associated to solutions of the Yang–Baxter equations,’’ Pacif. J. Math. 141, 311–332 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-P. Magnot, E. G. Reyes, and V. Roubtsov, ‘‘On \((t_{2},t_{3})\)-Zakharov–Shabat equations of generalized Kadomtsev–Petviashvili hierarchies,’’ J. Math. Phys. 63, 093501 (2022).

  19. J.-P. Magnot and E. G. Reyes, ‘‘Well-posedness of the Kadomtsev–Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups,’’ Ann. Henri Poincaré 21, 1893–1945 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. E. Marsden and P. J. Morrison, ‘‘Noncanonical Hamiltonian field theory and reduced MHD,’’ in Fluids and Plasmas: Geometry and Dynamics, Vol. 28 of Contemporary Mathematics (Am. Math. Soc., Providence, RI, 1984), pp. 133–150.

  21. T. Miwa, M. Jimbo, and E. Date, Solitons, Differential Equations, Symmetries and Infinite Dimensional Algebras (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  22. G. Monge, Application de l’analyse à la Géométrie: à l’usage de l’École Imperiale Polytechnique (Creative Media Partners, LLC, 2018).

    Google Scholar 

  23. M. Mulase, ‘‘Complete integrability of the Kadomtsev–Petvishvili equation,’’ Adv. Math. 54, 57–66 (1984).

    Article  MATH  Google Scholar 

  24. M. Mulase, ‘‘Solvability of the super KP equation and a generalization of the Birkhoff decomposition,’’ Invent. Math. 92, 1–46 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. J. Olver, Applications of Lie Groups to Differential Equations, Vol. 107 of Graduate Texts in Mathematics (Springer, New York, 1993).

  26. A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, ‘‘The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems,’’ Russ. Math. Surv. 42 (4), 1–63 (1987).

    Article  MATH  Google Scholar 

  27. A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, ‘‘The symmetry approach to classification of integrable equations,’’ in What is integrability?, Ed. by V. E. Zakharov, Springer Ser. Nonlinear Dynamics (Springer, Berlin, 1991), pp. 115–184.

  28. J.-M. Souriau, Un algorithme générateur de structures quantiques, Numéro Hors Série, The Mathematical Heritage of Élie Cartan (Astérisque, Lyon, 1985), pp. 341–399.

    Google Scholar 

  29. D. Spencer, ‘‘Overdetermined systems of linear partial differential equations,’’ Bull. Am. Math. Soc. 75, 179–239 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Takens, ‘‘A global version of the inverse problem of the calculus of variations,’’ J. Diff. Geom. 14, 543–562 (1979).

    MathSciNet  MATH  Google Scholar 

  31. W. M. Tulczyjew, ‘‘The Lagrange complex,’’ Bull. Soc. Math. Fr. 105, 419–431 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. M. Vinogradov and I. S. Krasil’shchik, ‘‘On the theory of nonlocal symmetries of nonlinear partial differential equations,’’ Dokl. Akad. Nauk SSSR 275, 1044–1049 (1984).

    MathSciNet  MATH  Google Scholar 

  33. A. M. Vinogradov, ‘‘Local symmetries and conservation laws,’’ Acta Appl. Math. 2 (1), 21–78 (1984).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

V.R. thanks IHES for hospitality. V.R. considers this paper as a small tribute to A.M. Vinogradov and to his ‘‘Friday’s Physical Seminar’’ in MSU, and to V. Petviashvili and O. Pogutse who opened to mathematicians their spontaneous but so important computations later transformed into the Kadomtsev–Petviashvili and Kadomtsev–Pogutse equations.

Funding

The work of V.R. was partially supported by Russian Science Foundation (grant no. 23-41-00049), used for the presentation of the results in Sections 2–3 and in the Introduction. E.G.R.’s research is partially supported by the FONDECYT, grant no. 1201894.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J.-P. Magnot, E. G. Reyes or V. Roubtsov.

Additional information

(Submitted by I. S. Krasil’shchik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnot, JP., Reyes, E.G. & Roubtsov, V. A Kadomtsev–Petviashvili Hierarchy Driven by Equation Manifolds. Lobachevskii J Math 44, 3963–3972 (2023). https://doi.org/10.1134/S1995080223090238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223090238

Keywords:

Navigation