Skip to main content
Log in

Parametric Korteweg–de Vries Hierarchy and Hyperelliptic Sigma Functions

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

In this paper, a parametric Korteweg–de Vries hierarchy is defined that depends on an infinite set of graded parameters \(a = (a_4,a_6,\dots)\). It is shown that, for any genus \(g\), the Klein hyperelliptic function \(\wp_{1,1}(t,\lambda)\) defined on the basis of the multidimensional sigma function \(\sigma(t, \lambda)\), where \(t = (t_1, t_3,\dots, t_{2g-1})\) and \(\lambda = (\lambda_4, \lambda_6,\dots, \lambda_{4 g + 2})\), specifies a solution to this hierarchy in which the parameters \(a\) are given as polynomials in the parameters \(\lambda\) of the sigma function. The proof uses results concerning the family of operators introduced by V. M. Buchstaber and S. Yu. Shorina. This family consists of \(g\) third-order differential operators in \(g\) variables. Such families are defined for all \(g \geqslant 1\), the operators in each of them pairwise commute with each other and also commute with the Schrödinger operator. In this paper a relationship between these families and the Korteweg–de Vries parametric hierarchy is described. A similar infinite family of third-order operators on an infinite set of variables is constructed. The results obtained are extended to the case of such a family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Korteweg and G. de Vries, “On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves”, Philos. Mag., 39:5 (1895), 422–443.

    Article  MATH  Google Scholar 

  2. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490.

    Article  MATH  Google Scholar 

  3. V. M. Buchstaber and A. V. Mikhailov, “Integrable polynomial Hamiltonian systems and symmetric powers of plane algebraic curves”, Russian Math. Surveys, 76:4 (2021), 587–652.

    Article  MATH  Google Scholar 

  4. S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation.”, Funct. Anal. Appl., 8:3 (1974), 54–66.

    Google Scholar 

  5. I. M. Gelfand and L. A. Dikii, “Asymptotic behaviour of the resolvent of Sturm–Liouville equations and the algebra of Korteweg–de Vries equations”, Russian Math. Surveys, 30:5 (1975).

    Google Scholar 

  6. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976).

    Article  Google Scholar 

  7. V. V. Sokolov, Algebraic Structures in Integrability, World Scientific, Hackensack, NJ, 2020.

    Book  MATH  Google Scholar 

  8. V. M. Buchstaber and S. Yu. Shorina, “The \(w\)-function of the KdV hierarchy. Geometry, topology, and mathematical physics”, Amer. Math. Soc. Transl. Ser. 2, no. 212, Amer. Math. Soc., Providence, RI, 2004, 41–66.

    Google Scholar 

  9. V. M. Buchstaber and S. Yu. Shorina, “Commuting multidimensional third-order differential operators defining a KdV hierarchy”, Russian Math. Surveys, 58:3 (2003), 610–612.

    Article  MATH  Google Scholar 

  10. V. M. Buchstaber and S. Yu. Shorina, “The \(w\)-function of a solution of the \(g\)-th stationary KdV equation”, Russian Math. Surveys, 58:4 (2003), 780–781.

    Article  MATH  Google Scholar 

  11. H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384.

    Article  MATH  Google Scholar 

  12. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. and Math. Physics, 10:2 (1997), 3–120.

    MATH  Google Scholar 

  13. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Amer. Math. Soc. Transl. Ser. 2, no. 179, Amer. Math. Soc., Providence, RI, 1997, 1–34.

    Google Scholar 

  14. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leikin, Multi-Dimensional Sigma-Functions, arXiv: 1208.0990.

  15. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996.

    Book  MATH  Google Scholar 

  16. V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, no. 294, Proc. Steklov Inst. Math, 2016, 176–200.

    Google Scholar 

  17. E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions”, Eur. J. Math., 4:1 (2018), 93–112.

    Article  MATH  Google Scholar 

  18. A. Nakayashiki, “On algebraic expressions of sigma functions for \((n,s)\)-curves”, Asian J. Math., 14:2 (2010), 175–212; arXiv: 0803.2083.

    Article  MATH  Google Scholar 

  19. B. A. Dubrovin and S. P. Novikov, “The periodic problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry.”, Dokl. Akad. Nauk SSSR, 219:3 (1974), 531–534.

    MATH  Google Scholar 

  20. V. M. Buchstaber and D. V. Leikin, “Solution of the Problem of Differentiation of Abelian Functions over Parameters for Families of \((n,s)\)-curves”, Funct. Anal. Appl., 42:4 (2008), 262–278.

    Article  Google Scholar 

  21. V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin, “\(\sigma\)-Functions: old and new results”, Integrable Systems and Algebraic Geometry, Vol. 2, London Math. Soc. Lecture Note Series, 459 Cambridge Univ. Press, Cambridge, 2020, 175–214.

    Chapter  MATH  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation (grant no. 20-11-19998), https://rscf.ru/project/20-11-19998/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Bunkova.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2022, Vol. 56, pp. 16–38 https://doi.org/10.4213/faa4020.

The article is dedicated to the memory of the remarkable mathematician Emma Previato (1952–2022)

Translated by S. Konstantinou-Rizos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunkova, E.Y., Bukhshtaber, V.M. Parametric Korteweg–de Vries Hierarchy and Hyperelliptic Sigma Functions. Funct Anal Its Appl 56, 169–187 (2022). https://doi.org/10.1134/S0016266322030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266322030029

Keywords

Navigation