Skip to main content
Log in

Positive Solutions for Elliptic Problems Involving Hardy–Sobolev–Maz’ya Terms

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In the present paper, we study the semilinear elliptic problem \(\displaystyle -\Delta u -\mu \frac{u}{|y|^{2}}=\frac{|u|^{2^{*}(s)-2}u}{|y|^{s}}+ f(x,u)\) in bounded domain. Replacing the Ambrosetti–Rabinowitz condition by general superquadratic assumptions and the nonquadratic assumption, we establish the existence results of positive solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponents: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253–294 (1988)

    Article  MathSciNet  Google Scholar 

  2. Bhakta, M., Sandeep, K.: Hardy–Sobolev–Maz’ya type equation in bounded domain. J. Differ. Equ. 247, 119–139 (2009)

    Article  MathSciNet  Google Scholar 

  3. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  4. Castorina, D., Fabbri, I., Mancini, G., Sandeep, K.: Hardy–Sobolev inequalities and hyperbolic symmetry. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19, 189–197 (2008)

    Article  MathSciNet  Google Scholar 

  5. Castorina, D., Fabbri, I., Mancini, G., Sandeep, K.: Hardy–Sobolev extremals, hyperbolic symmetry and scalar curvature equations. J. Differ. Equ. 246, 1187–1206 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cao, D., Han, P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 205, 521–537 (2004)

    Article  MathSciNet  Google Scholar 

  7. Cao, D., Peng, S.: A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differ. Equ. 193, 424–434 (2003)

    Article  MathSciNet  Google Scholar 

  8. Cao, D., Yan, S.: Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential. Calc. Var. Partial Differ. Equ. 38, 471–501 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chen, C., Kuo, Y., Wu, T.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)

    Article  MathSciNet  Google Scholar 

  10. Costa, D.G., Magalhāes, C.A.: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. 23, 1401–1412 (1994)

    Article  MathSciNet  Google Scholar 

  11. Chen, J.: Multiple positive solutions of a class of nonlinear elliptic equations. J. Math. Anal. Appl. 295, 341–354 (2004)

    Article  MathSciNet  Google Scholar 

  12. Ding, L., Tang, C.: Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy–Sobolev critical exponents. Appl. Math. Lett. 20, 1175–1183 (2007)

    Article  MathSciNet  Google Scholar 

  13. Ganguly, D.: Sign changing solutions of the Hardy–Sobolev–Maz’ya equation. Adv. Nonlinear Anal. 3, 187–196 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Ganguly, D., Sandeep, K.: Sign changing solutions of the Brezis–Nirenberg problem in the hyperbolic space. Calc. Var. Partial Differ. Equ. 50, 69–91 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ghoussoub, N., Yuan, C.: Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352, 5703–5743 (2000)

    Article  Google Scholar 

  16. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on \(\mathbb{R}^{N}\). Proc. R. Soc. Edinburgh A 129(4), 787–809 (1999)

    Article  Google Scholar 

  17. Kang, D.: On the quasilinear elliptic equations with critical Sobolev–Hardy exponents and Hardy-terms. Nonlinear Anal. 68, 1973–1985 (2008)

    Article  MathSciNet  Google Scholar 

  18. Kang, D., Peng, S.: Positive solutions for singular critical elliptic problems. Appl. Math. Lett. 17, 411–416 (2004)

    Article  MathSciNet  Google Scholar 

  19. Kang, D., Peng, S.: Solutions for semilinear elliptic problems with critical Sobolev–Hardy exponents and Hardy potential. Appl. Math. Lett. 18, 1094–1100 (2005)

    Article  MathSciNet  Google Scholar 

  20. Liu, H., Tang, C.: Positive solutions for semilinear elliptic equations with critical weighted Hardy–Sobolev exponents. Bull. Belg. Math. Soc. Simon Stevin 22, 1–21 (2015)

    MathSciNet  Google Scholar 

  21. Maz’ya, V.G.: Sobolev Space. Springer, Berlin (1985)

    Book  Google Scholar 

  22. Mancini, G., Sandeep, K.: On a semilinear elliptic equation in \(\mathbb{H}^{n}\). Annali della Scuola Normale Superiore di Pisa Classe di Scienze 7, 635–671 (2007)

    MATH  Google Scholar 

  23. Nguyen, L., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition. J. Geom. Anal. 24, 118–143 (2014)

    Article  MathSciNet  Google Scholar 

  24. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS. 65. American Mathematical Society, Providence (1985)

    Google Scholar 

  25. Schechter, M.: A variation of the mountain pass lemma and applications. J. Lond. Math. Soc. 244(3), 491–502 (1991)

    Article  MathSciNet  Google Scholar 

  26. Schecher, M., Zou, W.: On the Brezis–Nirenberg problem. Arch. Ration. Mech. Anal. 197, 337–356 (2010)

    Article  MathSciNet  Google Scholar 

  27. Wang, C., Wang, J.: Infinitely many solutions for Hardy–Sobolev–Maz’ya equation involving critical growth. Commun. Contemp. Math. 14(6), 1250044 (2012)

    Article  MathSciNet  Google Scholar 

  28. Yang, J.: Positive solutions for the Hardy–Sobolev–Maz’ya equation with Neumann boundary condition. J. Math. Anal. Appl. 421, 1889–1916 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Lei Tang.

Additional information

Communicated by Syakila Ahmad.

Supported by National Natural Science Foundation of China (No. 11471267).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, RT., Tang, CL. Positive Solutions for Elliptic Problems Involving Hardy–Sobolev–Maz’ya Terms. Bull. Malays. Math. Sci. Soc. 42, 2333–2359 (2019). https://doi.org/10.1007/s40840-018-0603-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-018-0603-3

Keywords

Navigation