Skip to main content
Log in

Airfoil Collocation Method Employing a New Efficient Procedure for Solving System of Two Logarithmic Integro–Differential Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this study, we present the airfoil collocation approach employing a new efficient procedure for approximating the solution of a system of two logarithmic integro-differential equations. We demonstrate the existence of solutions to the approximation equations and conduct an error analysis. It is necessary to solve two systems of linear equations. Finally, a numerical example demonstrates the method’s precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Akgül, A.: A novel method for a fractional derivative with non-local and non-singular kernel. Chaos, Solitons Fractals 114, 478–482 (2018)

    Article  MathSciNet  Google Scholar 

  2. Akgül, A., Ahmad, S., Ullah, A., Baleanu, D., Karatas Akgüla, E.: A novel method for analysing the fractal fractional integrator circuit. Alex. Eng. J. 60, 3721–3729 (2021)

    Article  Google Scholar 

  3. Akgül, A., Akgül, E.K.: A Novel Method for Solutions of Fourth-Order Fractional Boundary Value Problems. Fractal Fractional 3(2), 33 (2019). https://doi.org/10.3390/fractalfract3020033

    Article  MathSciNet  MATH  Google Scholar 

  4. Akgül, E.K., Akgül, A., Baleanu, D.: Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal Fractional 4(3), 30 (2020). https://doi.org/10.3390/fractalfract4030030

    Article  Google Scholar 

  5. Akgül, E.K., Akgül, A., Khan, Y., Baleanu, D.: Representation for the reproducing kernel Hilbert space method for a nonlinear system. Hacet. J. Math. Stat. 48(5), 1345–1355 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Akgül, E.K., Akgül, A., Yavuz, M.: New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives. Chaos, Solitons ractals 146, 110877 (2021)

    Article  MathSciNet  Google Scholar 

  7. Al-Ahmad, Sh., Sulaiman, I.B., Nawi, M.A.A., Mamat, M., Ahmad, M.Z.: Analytical solution of systems of Volterra integro-differential equations using modified differential transform method, Journal of Mathematics and Computer. Sci. 26, 1–9 (2022)

    Google Scholar 

  8. Araour, M., Mennouni, A.: A New Procedures for Solving Two Classes of Fuzzy Singular Integro-Differential Equations: Airfoil Collocation Methods. Int. J. Appl. Comput. Math 8, 35 (2022). https://doi.org/10.1007/s40819-022-01245-0

    Article  MathSciNet  Google Scholar 

  9. Bougoffa, L., Mennouni, A., Rach, R.C.: Solving Cauchy integral equations of the first kind by the Adomian decomposition method. Appl. Math. Comput. 219, 4423–4433 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Bougoffa, L., Rach, R.C., Mennouni, A.: A convenient technique for solving linear and nonlinear Abel integral equations by the Adomian decomposition method. Appl. Math. Comput. 218(5), 1785–1793 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Cimen, E., Yatar, S.: Numerical solution of Volterra integro-differential equation with delay. J. Math. Comput. Sci. 20(3), 255–263 (2020)

    Article  Google Scholar 

  12. Dawood, L.A., Hamoud, A.A., Mohammed, N.M.: Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations, Journal of Mathematics and Computer. Sci. 21, 158–163 (2020)

    Google Scholar 

  13. Hashem, H.H.G., Alrashidi, Hessah O.: Characteristics of solutions of nonlinear neutral integro-differential equation via Chandrasekhar integral. J. Math. Comput. Sci. 24, 173–185 (2022)

    Article  Google Scholar 

  14. Lepik, U.: Haar wavelet method for nonlinear integro-differential equations. Appl. Math. Comput. 176, 324–333 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Mennouni, A., Guedjiba, S.: A note on solving integro-differential equation with Cauchy Kernel. Math. Comput. Modelling 52, 1634–1638 (2010)

    Article  MathSciNet  Google Scholar 

  16. Mennouni, A., Guedjiba, S.: A note on solving Cauchy integral equations of the first kind by iterations. Appl. Math. Comput. 217, 7442–7447 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Mennouni, A.: The iterated projection method for integro-differential equations with Cauchy kernel. J. Appl. Math. Inf. Sci. 31, 661–667 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Mennouni, A.: A projection method for solving Cauchy singular integro-differential equations. Appl. Math. Lett. 25, 986–989 (2012)

    Article  MathSciNet  Google Scholar 

  19. Mennouni, A.: Airfoil polynomials for solving integro-differential equations with logarithmic kernel. Appl. Math. Comput. 218, 11947–11951 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Mennouni, A.: Two projection methods for skew-hermitian operator equations. Math. Comput. Modelling 55, 1649–1654 (2012)

    Article  MathSciNet  Google Scholar 

  21. Mennouni, A.: Piecewise constant Galerkin method for a class of Cauchy singular integral equations of the second kind in \(L^{2}\). J. Comput. Appl. Math. 326, 268–272 (2017)

    Article  MathSciNet  Google Scholar 

  22. Mennouni, A.: Improvement by projection for integro-differential equations. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6318

    Article  Google Scholar 

  23. Mennouni, A.: A new efficient strategy for solving the system of Cauchy integral equations via two projection methods. Trans. J. Mathe. Mech. 14, 63–71 (2022)

    Google Scholar 

  24. Nikan, O., Avazzadeh, Z.: Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl. Numer. Math. 169, 303–320 (2021)

    Article  MathSciNet  Google Scholar 

  25. Nikan, O., Avazzadeh, Z., Tenreiro Machado, J.A.: Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. Appl. Math. Model. 100, 107–124 (2021)

    Article  MathSciNet  Google Scholar 

  26. Parts, I., Pedas, A., Tamme, E.: Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 43, 1897–1911 (2005)

    Article  MathSciNet  Google Scholar 

  27. Pedas, A., Tamme, E.: Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 213, 111–126 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Mennouni.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mennouni, A. Airfoil Collocation Method Employing a New Efficient Procedure for Solving System of Two Logarithmic Integro–Differential Equations. Int. J. Appl. Comput. Math 8, 208 (2022). https://doi.org/10.1007/s40819-022-01421-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01421-2

Keywords

Mathematics Subject Classification

Navigation