Skip to main content
Log in

A Linear Spline Maximum Entropy Method for Frobenius-Perron Operators of Multi-dimensional Transformations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A piecewise linear spline maximum entropy optimization method is described for the approximation of fixed densities of the Frobenius-Perron operator associated with higher-dimensional transformations. Convergence in \(L^1\)-norm is proved and several examples with results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No confidential data is used in this manuscript. Maple codes for figures will be provided if necessary.

References

  1. Arqub, O.A.: Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates. J. Appl. Math. Comput. 59, 227–243 (2019)

    Article  MathSciNet  Google Scholar 

  2. Arqub, O.A., Rashaideh, H.: RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput. Appl. 30, 2595–2606 (2018)

    Article  Google Scholar 

  3. Bautin, N.N.: A dynamic model of an electromechanical clock with the hipp movement. Izv. Akad. Nauk SSSR, Otd. Tech. Nauk 11, 116–121 (1957)

    Google Scholar 

  4. Boyarsky, A., Góra, P.: A dynamical model for interference effects and two slit experiment of quantum physics,. Phys. Lett. A. 168, 103–112 (1992)

    Article  MathSciNet  Google Scholar 

  5. Boyarsky, A., Gora, P: Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension. Birkhauser, (1997)

  6. Boor, C. de.: A Practical Guide to Splines, Revised edition, Springer, (2001)

  7. Borwein, J.M., Lewis, A.S.: Convergence of the best entropy estimates. SIAM J. Optim. 1(2), 191–205 (1991)

    Article  MathSciNet  Google Scholar 

  8. Boyarsky, A., Lou, Y.S.: Approximating measures invariant under higher-dimensional chaotic transformations. J. Approx. Theory 65, 231–244 (1991)

    Article  MathSciNet  Google Scholar 

  9. Bose, C., Murray, R.: The exact rate of approximation in Ulam���s method. Discrete Contin. Dynam. Systems 7(1), 219–235 (2001)

    Article  MathSciNet  Google Scholar 

  10. Bose, C., Froyland, G., González-Tokman, C., Murray, R.: Ulam’s method for Lasota- Yorke maps with holes. SIAM J. Appl. Dyn. Syst. 13, 1010–1032 (2014)

    Article  MathSciNet  Google Scholar 

  11. Ding, J.: Computing Invariant Measures of Piecewise Convex Transformations. J. Stat. Phys. 83(3–4), 623–635 (1996)

    Article  MathSciNet  Google Scholar 

  12. Ding, J.: A maximum entropy method for solving Frobenius-Perron equations. Appl. Math. Cpmp. 93, 155–168 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Ding, J., Jin, C., Rhee, N.H., Zhou, A.: A maximum entropy method based on piecewise linear functions for the recovery of a stationary density of interval maps. J. Stat Phys. 145, 1620–1639 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ding, J., Mead, L.R.: The maximum entropy method applied to stationary density computation. Appl. Math. Cpmp. 185, 658–666 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Ding, J., Li, Y.: Markov Finite approximation of Frobenius-Perron operator. Nonlinear Anal. 17(8), 759–772 (1991)

    Article  MathSciNet  Google Scholar 

  16. Ding, J., Rhee, N.H.: A unified maximum entropy method via spline functions for Frobenius -Perron operators. Numer. Algeb. Cont. and Opti. 3(2), 235 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Ding, J., Rhee, N.H.: A maximum entropy method based on orthogonal polynomials for Frobenius-Perron operators. Adv. Applied Math. Mec. 3(2), 204–218 (2011)

    Article  MathSciNet  Google Scholar 

  18. Ding, J., Rhee, N.H.: Birkhoff’s ergodic theorem and the piecewise constant maximum entropy method for Frobenius-Perron operators. Inter. J. Computer Math. 89(8), 1083–1091 (2012)

    Article  MathSciNet  Google Scholar 

  19. Ding, J., Zhou, A.: Piecewise linear Markov approximations of Frobenius-Perron operators associated with multi-dimensional transformations. Nonlinear Anal. TMA 25(4), 399–408 (1995)

    Article  MathSciNet  Google Scholar 

  20. Ding, J., Zhou, A.: The projection method for computing multi-dimensional absolutely continuous invariant measures. J. Stat. Phys. 77(3/4), 899–908 (1994)

    Article  Google Scholar 

  21. Ding, J., Zhou, A.: Finite approximations of Frobenius-Perron operators. A solution of Ulam’s conjecture to multi-dimensional transformations. Physica D: Nonlinear Phenomena 92, 61–68 (1996)

    Article  MathSciNet  Google Scholar 

  22. Góra, P., Boyarsky, A.: Absolutely continuous invariant measures for piecewise expanding \(C^2\) transformations in \(\mathbb{R}^N\). Israel J. Math. 67(3), 272–286 (1989)

    Article  MathSciNet  Google Scholar 

  23. Jablonski, M.: On invariant measures for piecewise \(C^2\) transformations of the n-dimensional cube. Ann. Polon. Math. XLIII, 185–195 (1983)

    Article  Google Scholar 

  24. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  25. Keller, G.: Probabiliés-ergodicitéet mesures invariantes pour les transformations dilatantes par morceaux d’une région brné du plan. C.R. Acad. Sci. Paris S6r. I Math. 289, 625–627 (1979)

    MATH  Google Scholar 

  26. Komraz, L. A. : Dynamic models of the Hipp pendulum regulator. Pripladnaja Mathematica Mechanika 35, 147 – 162 (Russian) (1974)

  27. Lasota, A., Mackey, M. C.: Chaos, fractals, and noise. Stochastic aspects of dynamics. Applied Mathematical Sciences 97, Springer-Verlag, New York, (1994)

  28. Lasota, A., Rusek, P. : An application of ergodic theory to the tetermination of the efficiency of cogged drilling bits, Arch. górnictowa, 19, 281 – 295 (in Polish) Trans. Amer. Math. Soc. 186 , 481– 488 (1974)

  29. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186, 481–488 (1973)

    Article  MathSciNet  Google Scholar 

  30. Li, T.-Y.: Finite Approximation for the Frobenius-Perron operator: a solution to Ulam’s Conjecture. J. Approx. Theory 17, 177–186 (1976)

    Article  MathSciNet  Google Scholar 

  31. Momani, S.M., Arqub, O.A., Maayah, B.: Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienard’s equation. Fractals 28(8), 1–13 (2020)

    MATH  Google Scholar 

  32. Momani, S., Maayah, B., Arqub, O.A.: The Reproducing Kernel Algorithm for Numerical Solution of Van Der Pol Damping Model in View of the Atangana-Baleanu Fractional Approach. Fractals 28(8), 2040010 (2020)

    Article  Google Scholar 

  33. Mead, L.R.: Approximate solutions of Fredholm integral equations by the maximum entropy method. J. Math. Phys. 27(12), 1903–1907 (1986)

    Article  MathSciNet  Google Scholar 

  34. Mead, L.R., Papanicolaou, N.: Maximum entropy in the problem of moments. J. Math. Phys. 25, 2404–2417 (1984)

    Article  MathSciNet  Google Scholar 

  35. Miller, W.M.: Stability and approximation of invariant measures for a class of non-expanding transformations. Nonlinear Anal. 23(8), 1013–1025 (1994)

    Article  MathSciNet  Google Scholar 

  36. Nguyen, S.H., David, C.: New invariant measures to track slow parameter drifts in fast dynamical systems. Nonlinear Dyn. 79, 1207–1216 (2015)

    Article  MathSciNet  Google Scholar 

  37. Schenk-Hoppe, K. R. : Random Dynamical Systems in Economics, working paper series, ISSN 1424 – 0459, Institute of empirical research in economics, University of Zurich (2000)

  38. Swishchuk, A.V., Islam, M.S.: The Geometric Markov Renewal Processes with application to Finance. Stoch. Anal. Appl. 29(4), 684–705 (2011)

    Article  MathSciNet  Google Scholar 

  39. Slomczynski, W., Kwapien, J., Zyczkowski, K.: Entropy computing via integration over fractal measures. Chaos 10, 180–188 (2000)

    Article  MathSciNet  Google Scholar 

  40. Ulam, S.M: A Collection of Mathematical problems. Interscience Tracts in Pure and Applied Mathematics 8, Interscience, New York (1960)

Download references

Acknowledgements

The authors are grateful to anonymous reviewers for their valuable comments which improved the presentation of the paper. This research is funded by NSERC DG grant 2017-05321 of Md Shafiqul Islam at the University of Prince Edward Island, PE, Canada. Adam Smith is an undergraduate student in the School of Mathematical and Computational Sciences at the University of Prince Edward island and he grateful to NSERC for financial support for his USRA fund at the University of Prince Edward Island. Adam Smith is also grateful to his NSERC USRA supervisor Prof. Md Shafiqul Islam and the School of Mathematical and Computational Science at the University of Prince Edward Island for the hospitality during the tenure of his undergraduate NSERC USRA.

Funding

This research is partially supported by NSERC DG grant of Md Shafiqul Islam at the University of Prince Edward Island, PE, Canada. Adam Smith is grateful to NSERC for financial support for his USRA fund at the University of Prince Edward Island.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Shafiqul Islam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical statement

All ethical issues are carefully considered. No ethical issue is violated by the authors in this manuscripts. All necessary references are included.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.S., Smith, A. A Linear Spline Maximum Entropy Method for Frobenius-Perron Operators of Multi-dimensional Transformations. Int. J. Appl. Comput. Math 8, 180 (2022). https://doi.org/10.1007/s40819-022-01386-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01386-2

Keywords

Navigation