Skip to main content
Log in

On string functions and double-sum formulas

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

String functions are important building blocks of characters of integrable highest modules over affine Kac–Moody algebras. Kac and Peterson computed string functions for affine Lie algebras of type \(A_{1}^{(1)}\) in terms of Dedekind eta functions. We obtain new symmetries for string functions by exploiting their natural setting of Hecke-type double-sums, where special double-sums are expressed in terms of Appell–Lerch functions and theta functions, where we point out that Appell–Lerch functions are the building blocks of Ramanujan’s classical mock theta functions. We then demonstrate the utility of the new symmetries by giving new proofs of classical string function identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Andrews, G.E.: Hecke modular forms and Kac–Peterson identities. Trans. Am. Math. Soc. 283(2), 451–458 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E.: The fifth and seventh order mock theta functions. Trans. Am. Math. Soc. 493(1), 113–134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook. Part V. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  4. Andrews, G.E., Hickerson, D.R.: Ramanujan’s “lost’’ notebook. VII: the sixth order mock theta functions. Adv. Math. 89(1), 60–105 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrne, E., Horlemann, A.-L., Khathuria, K., Weger, V.: Density of free modules over finite chain rings. Linear Algebra Appl. 651, 1–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choi, Y.-S.: Tenth order mock theta functions in Ramanujan’s lost notebook. Invent. Math. 136(3), 497–569 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, Y.-S.: Tenth order mock theta functions in Ramanujan’s lost notebook II. Adv. Math. 156(2), 180–285 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, Y.-S.: Tenth order mock theta functions in Ramanujan’s lost notebook III. Proc. Lond. Math. Soc. 3(94), 26–52 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, C., Kac, V., Ren, L.: Trace functions of the parafermion vertex operator algebras. Adv. Math. 348, 1–17 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dousse, J., Osburn, R.: A \(q\)-multisum identity arising from finite chain ring probabilities. Electron. J. Combin. 29(2), 7 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Distler, J., Qiu, Z.: BRS cohomology and a Feigin–Fuchs representation of Kac–Moody and parafermionic theories. Nucl. Phys. B 336, 533–546 (1990)

    Article  MathSciNet  Google Scholar 

  12. Hatayama, G., Kirillov, A.N., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Character formulae of \(\widehat{sl_n}\)-modules and inhomogeneous paths. Nuclear Phys. B 536(3), 575–616 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hickerson, D.R.: A proof of the mock theta conjectures. Invent. Math. 94(3), 639–660 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hickerson, D.R.: On the seventh order mock theta functions. Invent. Math. 94(3), 661–677 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hickerson, D.R., Mortenson, E.T.: Hecke-type double sums, Appell–Lerch sums, and mock theta functions, I. Proc. Lond. Math. Soc. (3) 109(2), 382–422 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuniba, A., Nakanishi, T., Suzuki, J.: Characters in conformal field theories from thermodynamic Bethe ansatz. Mod. Phys. Lett. A 8(18), 1649–1659 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kac, V.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  18. Kac, V., Peterson, D.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53, 125–264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kac, V., Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Aci. USA 85(14), 4956–4960 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kac, V., Wakimoto, M.: Classification of modular invariant representations of affine algebras. Adv. Ser. Math. Phys. 7, 138–177 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Lepowsky, J., Primc, M.: Structure of the Standard Modules for the Affine Lie Algebra \(A_{1}^{(1)}\). Contemporary Mathematics, vol. 46. AMS, Providence (1985)

    MATH  Google Scholar 

  22. Mortenson, E.T.: On the tenth-order mock theta functions. J. Aust. Math. Soc. 104(1), 44–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mortenson, E.T.: A heuristic guide to evaluating triple-sums. Hardy-Ramanujan J. 43, 99–121 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa Publishing House, New Delhi (1988)

    MATH  Google Scholar 

  25. Schilling, A., Warnaar, S.O.: Conjugate Bailey Pairs. Contemp. Math. 197, 227–255 (2002)

    Article  MATH  Google Scholar 

  26. Warnaar, S.O.: 50 years of Bailey’s lemma. In: Betten, A., et al. (eds.) Algebraic Combinatorics and Applications, pp. 333–347. Springer, Berlin (2001)

    Chapter  Google Scholar 

  27. Zwegers, S.P.: Mock theta functions. Ph.D. Thesis, Universiteit Utrecht (2002)

Download references

Acknowledgements

This research was supported by the Theoretical Physics and Mathematics Advancement Foundation BASIS, Agreement No. 20-7-1-25-1. We would also like to thank O. Warnaar and E. Feigin for helpful comments and suggestions. The authors state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric T. Mortenson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortenson, E.T., Postnova, O. & Solovyev, D. On string functions and double-sum formulas. Res Math Sci 10, 15 (2023). https://doi.org/10.1007/s40687-023-00379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-023-00379-x

Keywords

Mathematics Subject Classification

Navigation