Skip to main content
Log in

The Continuity Method to Deform Cone Angle

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The continuity method is used to deform the cone angle of a weak conical Kähler–Einstein metric with cone singularities along a smooth anti-canonical divisor on a smooth Fano manifold. This leads to an alternative proof of Donaldson’s Openness Theorem on deforming cone angle Donaldson (Essays in Mathematics and Its Applications, 2012) by combining it with the regularity result of Guenancia–Păun (arXiv:1307.6375 2013) and Chen–Wang (arXiv:1405.1201 2014). This continuity method uses relatively less regularity of the metric (only weak conical Kähler–Einstein) and bypasses the difficult Banach space set up; it is also generalized to deform the cone angles of a weak conical Kähler–Einstein metric along a simple normal crossing divisor (pluri-anticanonical) on a smooth Fano manifold (assuming no tangential holomorphic vector fields).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Réduction du cas positif de l’équation de Monge-Ampère sur les variété Kähleriennes compactes à la démonstration d’une inégalité. J. Funct. Anal. 57, 143–153 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, R.: A thermodynamical formalism for Monge-Ampère equations Moser-Trudinger inequalities and Kähler-Einstein metrics. Adv. Math. 248(25), 1254–1297 (2013). doi:10.1016/j.aim.2013.08.024

    Article  MathSciNet  MATH  Google Scholar 

  3. Berndtsson, B.: A Brunn–Minkowski type inequality For Fano Manifolds and some uniqueness Theorems in Kähler geometry. Invent. Math. (2014). doi:10.1007/00222-014-0532-1

  4. Berman, R.J., Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Kähler-Einstein metrics and the Kähler-Ricci flow on Log Fano varieties. arXiv:1111.7158

  5. Chern, S.-S.: On holomorphic mappings of Hermitian manifolds of the same dimension. Proceedings of Symposium in Pure Mathematics 11, American Mathematical Society, pp. 157–170 (1968)

  6. Chen, X.-X.: On the lower bound of the Mabuchi energy and its application. Internat. Math. Res. Notices, no. 12, 607–623 (2000)

  7. Chen, X.-X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Campana, F., Guenancia, H., Păun, M.: Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Annales scientifiques de l’ENS 46, fascicule 6, 879–916 (2013)

  9. Chen, X.-X., Wang, Y.-Q.: On the regularity problem of complex Monge-Ampère equations with conical singularities (2014). arXiv:1405.1201

  10. Donaldson, S.K.: Kähler metrics with cone singularities along a divisor. In: Essays in Mathematics and Its Applications, pp. 49–79. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28821-0_4

  11. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math. 35, 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler–Einstein metrics. J. Amer. Math. Soc. 22, 607–639 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guenancia, H., Păun, M.: Conic singularities metrics with Prescribed Ricci curvature: The case of General cone angles along normal crossing divisors. (2013) arXiv:1307.6375

  14. Jeffres, T.D., Mazzeo, R., Rubinstein, Y.: Kähler-Einstein metrics with Edge singularities (with an appendix by C. Li and Y.A. Rubinstein), preprint, 2011, arxiv:1105.5216. In revision for Annals of Math

  15. Kołodziej, S.: The Complex Monge-Ampère equation. Acta. Math. 180, 69–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 46, 487–523 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Li, C., Sun, S.: Conical Kähler Einstein metrics revisited. Comm. Math. Phys. 331(3), 927–973 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, Y.-C.: Holomorphic Mapping of Complex Manifolds. J. Diff. Geom. 2, 299–312 (1968)

    MATH  Google Scholar 

  19. Mabuchi, T.: K-energy maps integrating Futaki invariant. Tôhoku Math. J. 38, 575–593 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Song, J., Wang, X.-W.: The Greatest Ricci Lower Bound, Conical Einstein Metrics and the Chern Number Inequality. arXiv: 1207.4839

  21. Székelyhidi, G.: Greatest lower bounds on the Ricci curvature of Fano manifolds. Compositio Math. 147, 319–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, G.: Kähler–Einstein metrics with Positive Scalar curvature. Invent. Math. 137, 1–37 (1997)

    Article  MATH  Google Scholar 

  23. Yao, C.-J.: Existence of weak conical Kähler-Einstein metrics along smooth hypersurfaces. Math. Ann. (2014). doi:10.1007/s00208-014-1140-5

  24. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31, 339–441 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to his advisor, Professor Xiuxiong Chen, for introducing this problem about openness and giving insight on the possibility of bypassing the implicit function theorem for singular metrics. Great thanks also go to Dr. Song Sun, Yuanqi Wang and Long Li for helpful discussions and useful suggestions. He would also like to thank the referee for careful reading and useful suggestions for the organization of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjian Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C. The Continuity Method to Deform Cone Angle. J Geom Anal 26, 1155–1172 (2016). https://doi.org/10.1007/s12220-015-9586-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9586-6

Keywords

Mathematics Subject Classification

Navigation