Skip to main content
Log in

Solvability of an infinite system of fractional differential equations with p-Laplacian operator in a new tempered sequence space

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this article, an infinite system of three point boundary value problem of p-Laplacian operator is considered for the existence of solution in a new sequence space related to the tempered sequence space \(\ell _{p}^{\alpha },\) \(p\ge 1\), via the technique of the Hausdorff measure of noncompactness. To illustrate our new results in tempered sequence spaces, we provide a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghajani, A., Pourhadi, E.: Application of measure of noncompactness to \(\ell _{1}\)-solvability of infinite systems of second order differential equations. Bull. Belg. Math. Soc. Simon Stevin 22(1), 105–118 (2015)

    Article  MathSciNet  Google Scholar 

  2. Banaś, J., Lecko, M.: Solvability of infinite systems of differential equations in Banach sequence spaces. J. Comput. Appl. Math. 137, 363–375 (2001)

    Article  MathSciNet  Google Scholar 

  3. Banaś, J., Lecko, M.: An existence theorem for a class of infinite system of integral equations. Math. Comput. Model. 34, 535–539 (2001)

    Article  MathSciNet  Google Scholar 

  4. Banaś, J., Mursaleen, M., Rizvi, S.M.H.: Existence of solutions to a boundaryvalue problem for an infinite systems of differential equations. Electron J. Differ. Eq. 262, 1–12 (2017)

    Google Scholar 

  5. Ahmad, B., Alghanmi, M., Alsaedi, A., Srivastava, H.M., Ntouyas, S.K.: The Langevin equation in terms of generalized Liouville–Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral. Mathematics 7(6), 533 (2019). https://doi.org/10.3390/math7060533

    Article  Google Scholar 

  6. Ayman Mursaleen, M.: A note on matrix domains of copson matrix of order \(\alpha \) and compact operators. Asian-Eur. J. Math. 15(7), 2250140 (2022). https://doi.org/10.1142/S1793557122501406

    Article  MathSciNet  Google Scholar 

  7. Banaś, J.: Measures of noncompactness in the study of solutions of nonlinear differential and integral equations. Open Math. 10(6), 2003–2011 (2012). https://doi.org/10.2478/s11533-012-0120-9

    Article  MathSciNet  Google Scholar 

  8. Banaś, J., Goebel, K.: Measures of noncompactness in banach spaces. In: Banas, J., Goebel, K. (eds.) Lecture notes in pure and applied mathematics, vol. 60. Dekker, New York (1980)

    Google Scholar 

  9. Banaś, J., Krajewska, M.: Existence of solutions for infinite systems of differential equations in spaces of tempered sequences. Electron. J. Diff. Equ. 28, 60 (2017)

    MathSciNet  Google Scholar 

  10. Banaś, J., Mursaleen, M.: Sequence spaces and measures of noncompactness with applications to differential and integral equations. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1886-9

    Book  Google Scholar 

  11. Coffey, W.T., Kalmykov, Y.P., Waldron, J.T.: The Langevin equation, world scientific series in contemporary chemical physics, vol. 14, 2nd edn. World Scientific Publishing Co. Inc, River Edge (2004)

    Google Scholar 

  12. Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gabeleh, M., Malkowsky, E., Mursaleen, M., Rako čević, V.: A new survey of measures of noncompactness and their applications. Axioms 11(6), 299 (2022). https://doi.org/10.3390/axioms11060299

    Article  Google Scholar 

  14. Haque, I., Ali, J., Mursaleen, M.: Solvability of implicit fractional order integral equation in \(\ell _{p}(1\le p<\infty )\) space via generalized Darbo’s fixed point theorem. J. Funct. Spaces 8, 1674243 (2022). https://doi.org/10.1155/2022/1674243

    Article  Google Scholar 

  15. Haque, I., Ali, J., Mursaleen, M.: Existence of solutions for an infinite system of Hilfer fractional boundary value problems in tempered sequence spaces. Alex. Eng. J. 65, 575–583 (2023). https://doi.org/10.1016/j.aej.2022.09.032

    Article  Google Scholar 

  16. Haque, I., Ali, J., Mursaleen, M.: Solvability of infinite system of Langevin fractional differential equation in a new tempered sequence space. Fract. Calc. Appl. Anal. (2023). https://doi.org/10.1007/s13540-023-00175-y

    Article  MathSciNet  Google Scholar 

  17. Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10(5), 2607–2619 (2017). https://doi.org/10.22436/jnsa.010.05.27

    Article  MathSciNet  Google Scholar 

  18. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218(3), 860–865 (2011). https://doi.org/10.1016/j.amc.2011.03.062

    Article  MathSciNet  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204. North-Holland Mathematics Studies, Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  20. Mehravaran, H., Kayvanloo, H.A., Mursaleen, M.: Solvability of infinite systems of fractional differential equations in the double sequence space \(2^c(\Delta )\). Fract. Calc. Appl. Anal. 25(6), 2298–2312 (2022)

    Article  MathSciNet  Google Scholar 

  21. Metzler, R., Schick, W., Kilian, H.-G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103(16), 7180–7186 (1995). https://doi.org/10.1063/1.470346

    Article  Google Scholar 

  22. Mursaleen, M.: Application of measure of noncompactness to infinite system of differential equations. Canad. Math. Bull. 56(2), 388–394 (2013). https://doi.org/10.4153/CMB-2011-170-7

    Article  MathSciNet  Google Scholar 

  23. Mursaleen, M., Bilalov, B., Rizvi, S.M.H.: Applications of measures of noncompactness to infinite system of fractional differential equations. Filomat 31(11), 3421–3432 (2017). https://doi.org/10.2298/fil1711421m

    Article  MathSciNet  Google Scholar 

  24. Mursaleen, M., Rakočević, V.: A survey on measures of noncompactness with some applications in infinite systems of differential equations. Aequ. Math. 96(3), 489–514 (2022)

    Article  MathSciNet  Google Scholar 

  25. Mursaleen, M., Rizvi, S.M.H.: Solvability of infinite system of second order differential equations in \(c_{0}\) and \(\ell _{1}\) by Meir-Keeler condensing operator. Proc. Amer. Math. Soc. 144(10), 4279–4289 (2016)

    Article  MathSciNet  Google Scholar 

  26. Petráš, I.: Fractional order nonlinear systems: modeling. Analysis and simulation. Springer, Berlin (2011)

    Book  Google Scholar 

  27. Podlubny, I.: Fractional differential equations, mathematics in science and engineering, (1999)

  28. Rabbani, M., Das, A., Hazarika, B., Arab, R.: Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations. Chaos Solitons Fractals 140, 110221 (2020). https://doi.org/10.1016/j.chaos.2020.110221

    Article  MathSciNet  Google Scholar 

  29. Rzepka, R., Sadarangani, K.: On solutions of an infinite system of singular integral equations. Math. Comput. Model. 45, 1265–1271 (2007)

    Article  MathSciNet  Google Scholar 

  30. Salem, A.: Existence results of solutions for anti-periodic fractional Langevin equation. J. Appl. Anal. Comput. 10(6), 2557–2574 (2020). https://doi.org/10.11948/20190419

    Article  MathSciNet  Google Scholar 

  31. Salem, A., Almaghamsi, L., Alzahrani, F.: An infinite system of fractional order with p-laplacian operator in a tempered sequence space via measure of noncompactness technique. Fractal Fract. 5(4), 182 (2021). https://doi.org/10.3390/fractalfract5040182

    Article  Google Scholar 

  32. Salem, A., Alshehri, H.M., Almaghamsi, L.: Measure of noncompactness for an infinite system of fractional Langevin equation in a sequence space. Adv. Diff. Equ. (2021). https://doi.org/10.1186/s13662-021-03302-2

    Article  MathSciNet  Google Scholar 

  33. Salem, A., Alzahrani, F., Almaghamsi, L.: Fractional Langevin equations with nonlocal integral boundary conditions. Mathematics 7(5), 402 (2019). https://doi.org/10.3390/math7050402

    Article  Google Scholar 

  34. Seemab, A., Rehman, M.U.: Existence of solution of an infinite system of generalized fractional differential equations by Darbo’s fixed point theorem. J. Comput. Appl. Math. 364, 112355 (2020). https://doi.org/10.1016/j.cam.2019.112355

    Article  MathSciNet  Google Scholar 

  35. Tomovski, Ž: Generalized cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator. Nonlinear Anal. Theory Methods Appl 75(7), 3364–3384 (2012). https://doi.org/10.1016/j.na.2011.12.034

    Article  MathSciNet  Google Scholar 

  36. Yang, X.-J., Gao, F., Yang, J.: General fractional derivatives with applications in viscoelasticity. Academic Press, London (2020)

    Google Scholar 

  37. Wang, F., Cui, Y.: Positive solutions for an infinite system of fractional order boundary value problems. Adv. Diff. Equ. 2019, 169 (2019)

    Article  MathSciNet  Google Scholar 

  38. Wang, F., Cui, Y.: Solvability for an infinite system of fractional order boundary value problems. Ann. Funct. Anal. 10(3), 395–411 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was done when the first author (MM) visited Uşak University during May 06 to June 11, 2023 under the Project of TUBITAK. He is very much thankful to TUBITAK and Uşak University for providing the local hospitalities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mursaleen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mursaleen, M., Savaş, E. Solvability of an infinite system of fractional differential equations with p-Laplacian operator in a new tempered sequence space. J. Pseudo-Differ. Oper. Appl. 14, 57 (2023). https://doi.org/10.1007/s11868-023-00552-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-023-00552-4

Keywords

Mathematics Subject Classification

Navigation