Skip to main content
Log in

A second order approach to analyse spatial point patterns with functional marks

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

A new second order statistic based on the mark correlation function to analyse spatial point patterns with functional marks is presented. An edge corrected estimator is defined and illustrated through a simulation study and two data sets involving two spatially explicit demographic functions, namely, the town population pyramid and the demographic evolution from 1996 to 2008 involving 121 towns. Our results confirm the usefulness of our approach compared with other well-established spatial statistical tools such as the mark correlation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Comas C, Palahi M, Pukkala T, Mateu J (2009) Characterising forest spatial structures through inhomogeneous second order characteristics. Stoch Environ Res Risk Assess 23:387–397

    Article  MathSciNet  Google Scholar 

  • Daley DJ, Vere-Jones D (2004) An introduction to the theory of point processes, 2nd edn. Springer, New York

    Google Scholar 

  • Diggle PJ (1975) Robust density estimation using distance methods. Biometrika 62:39–48

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns. Hodder Arnold, Sevenoaks

    MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Theory and practice. Springer series in statistics. Springer, New York

    MATH  Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2009) Continuous time-varying kriging for spatial prediction of functional data: an environmental application. J Agric Biol Environ Statist (JABES) 15(1):66–82

    Article  MathSciNet  Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2010) Geostatistics for functional data: an ordinary kriging approach. Environ Ecol Stat. doi:10.1007/s10651-010-0143-y

  • Glass L, Tobler WR (1971) Uniform distribution of objects in a homogeneous field: cities on a plain. Nature 233:67–68

    Article  Google Scholar 

  • Illian J, Benson E, Crowford J, Staines H (2005) Principal component analysis for spatial point processes-assessing the appropriateness of the approach in an ecological context. In: Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (eds) Case studies in spatial point process modeling. Lecture notes in statistics, vol 185. Springer, Berlin

    Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, New York

    MATH  Google Scholar 

  • Isham V (1987) Marked point processes and their correlations. In: Droesbeke F (ed) Spatial processes and spatial time series analysis, proceedings of the 6th Franco-Belgian meeting of statisticians, 1985. Publications des Facultés Universitaires Saint-Louis, Brussels, pp 63–75

    Google Scholar 

  • Lewis SM (1975) Robust estimation of density for a two-dimensional point process. Biometrika 62:519–521

    Article  MathSciNet  MATH  Google Scholar 

  • Mateu J, Usó JL, Montes F (1998) The spatial pattern of forest ecosystems. Ecol Model 108:163–174

    Article  Google Scholar 

  • Mateu J, Lorenzo G, Porcu E (2008) Detecting features in spatial point processes with clutter via local indicators of spatial association. J Comput Graph Stat 16:968–990

    MathSciNet  Google Scholar 

  • Morisita M (1957) A new method for the estimation of density by spacing method applicable to non-randomly distributed populations. Physiol Ecol 7:134–144

    Google Scholar 

  • Patil SA, Burnham KP, Kovner JL (1982) Optimum non-parametric estimation of population density based on ordered distance. Biometrics 38:243–248

    Article  MATH  Google Scholar 

  • Penttinen A, Stoyan D (1989) Statistical analysis for a class of line segment processes. Scand J Stat 16:153–161

    MathSciNet  MATH  Google Scholar 

  • Penttinen A, Stoyan D, Henttonen HM (1992) Marked point processes in forest statistics. Forest Sci 38:806–824

    Google Scholar 

  • Ramsay J, Silverman B (2001) Functional data analysis. In: International encyclopedia of social and behavioral sciences. Elsevier, Amsterdam, pp 5822–5828

    Chapter  Google Scholar 

  • Ramsay J, Silverman B (2005) Functional data analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Renshaw E, Särkkä A (2001) Gibbs point processes for studying the development of spatial-temporal stochastic processes. Comput Stat Data Anal 36:85–105

    Article  MATH  Google Scholar 

  • Renshaw E, Mateu J, Saura F (2007) Disentangling mark/point interaction in marked point processes. Comput Stat Data Anal 51:3123–3144

    Article  MathSciNet  MATH  Google Scholar 

  • Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266

    Article  MathSciNet  MATH  Google Scholar 

  • Ripley BD (1988) Statistical inference for spatial processes. Cambridge University Press, Cambridge

    Google Scholar 

  • Särkkä A (1992) A note on robust intensity estimation for point processes. Biom J 34:757–767

    Article  Google Scholar 

  • Schlather M (2001) On the second-order characteristics of marked point processes. Bernoulli 7:99–117

    Article  MathSciNet  MATH  Google Scholar 

  • Schlather M, Ribeiro PJ, Diggle PJ (2004) Detecting dependence between marks and locations of marked point processes. J R Stat Soc B 66:79–93

    Article  MathSciNet  MATH  Google Scholar 

  • Stoyan D (1984) On correlations of marked point processes. Math Nachr 116:197–207

    Article  MathSciNet  MATH  Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields: methods of geometrical statistics. Wiley, Chichester

    MATH  Google Scholar 

  • Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Comas.

Additional information

Work partially funded by grants, MTM2007-62923 and MTM2009-13985-C02-01 from the Spanish Ministry of Science and Education, and FEDER.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comas, C., Delicado, P. & Mateu, J. A second order approach to analyse spatial point patterns with functional marks. TEST 20, 503–523 (2011). https://doi.org/10.1007/s11749-010-0215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-010-0215-1

Keywords

Mathematics Subject Classification (2000)

Navigation