Skip to main content
Log in

Award scheme in productivity-based contests

  • Short Communication
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study the award scheme in the productivity-based contests in which the solvers’ performance is the product of the effort and their heterogeneous abilities. We consider the cases in which the seeker cares about the expected average quality (expected maximum quality) of solutions and the number of solvers is fixed. Our results show that the risk types of solvers, heterogeneous winning probability, and relative heterogeneity among the solvers can affect the award scheme and award allocation manner. Our study can provide some management insights for the seeker and enrich the heterogeneous contest theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

Our manuscript has no associated data or the data will not be deposited.

References

  1. Ales, L., Cho, S.H., Körpeoğlu, E.: Innovation tournaments with multiple contributors. Prod. Oper. Manag. 30(6), 1772–1784 (2020)

    Article  Google Scholar 

  2. Ales, L., Cho, S.H., Körpeoğlu, E.: Optimal award scheme in innovation tournaments. Oper. Res. 65(3), 693–702 (2017)

    Article  MathSciNet  Google Scholar 

  3. Archak, N., Sundararajan, A.: Optimal design of crowdsourcing contests. In: ICIS Proceedings, vol. 2009 (2009)

  4. Brabham, D.C.: Crowdsourcing. MIT Press, Cambridge, MA (2013)

    Book  Google Scholar 

  5. Chen, Y.J., Dai, T., Korpeoglu, C.G., Körpeoğlu, E., Sahin, O., Tang, C.S., Xiao, S.: Innovative online platforms: research opportunities. Manuf. Serv. Oper. Manag. 22(3), 430–445 (2020)

    Article  Google Scholar 

  6. Deng, W., Guan, X., Ma, S., Liu, S.: Selection of crowdsourcing formats: simultaneous contest vs sequential contest. Ind. Manag. Data Syst. 119(1), 35–53 (2019)

    Article  Google Scholar 

  7. Hu, M., Wang, L.: Joint vs. separate crowdsourcing contests. Manage. Sci. 67(5), 2711–2728 (2020)

    Article  Google Scholar 

  8. Jian, L., Li, Z., Liu, T.X.: Competing openly or blindly in crowdsourcing contests. In: Technical Reports, Working paper, University of Southern California, Los Angeles (2013)

  9. Kalra, A., Shi, M.: Designing optimal sales contests: a theoretical perspective. Mark. Sci. 20(2), 170–193 (2001)

    Article  Google Scholar 

  10. Körpeoğlu, E., Cho, S.H.: Incentives in contests with heterogeneous solvers. Manag. Sci. 64(6), 2709–2715 (2017)

    Article  Google Scholar 

  11. Korpeoglu, C., Körpeoğlu, E., Tunç, S.: Optimal duration of innovation contests. Manuf. Serv. Oper. Manag. 23(3), 657–675 (2021)

    Article  Google Scholar 

  12. Liu, T.X., Yang, J., Adamic, L.A., Chen, Y.: Crowdsourcing with all-pay auctions: a field experiment on taskcn. Manag. Sci. 60(8), 2020–2037 (2014)

    Article  Google Scholar 

  13. Moldovanu, B., Sela, A.: The optimal allocation of prizes in contests. Am. Econ. Rev. 91(3), 542–558 (2001)

    Article  Google Scholar 

  14. Segev, E., Sela, A.: Multi-stage sequential all-pay auctions. Eur. Econ. Rev. 70, 371–382 (2014)

    Article  Google Scholar 

  15. Stouras, K.I., Hutchison-Krupat, J., Chao, R.O.: The role of participation in innovation contests. Manag. Sci. 68(6), 4135–4150 (2021)

    Article  Google Scholar 

  16. Terwiesch, C., Xu, Y.: Innovation contests, open innovation, and multiagent problem solving. Manag. Sci. 54(9), 1529–1543 (2008)

    Article  Google Scholar 

  17. Tian, X.: Innovation contests with risk-averse participants. Nav. Res. Logist. 69(4), 599–608 (2022)

    Article  MathSciNet  Google Scholar 

  18. Tian, X., Bi, G.B.: Award scheme in random trial contests. Ann. Oper. Res. 302(1), 313–325 (2021)

    Article  MathSciNet  Google Scholar 

  19. Tian, X., Bi, G.B.: Multiplicative output form and its applications to problems in the homogenous innovation contest model. OR Spectr. 44, 709–732 (2022)

    Article  MathSciNet  Google Scholar 

  20. Tian, X., Bi, G.B., Shen, X.B., Liu, L.D.: Crowdsourcing contests with entry cost. Int. Trans. Oper. Res. 28(3), 1371–1392 (2021)

    Article  MathSciNet  Google Scholar 

  21. Tian, X., Bi, G.B., Xu, Y.: Does an increase in the number of solvers benefit the seeker in heterogeneous contests? Oper. Res. Lett. 50(5), 596–601 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Tian.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Appendix

Appendix A: Appendix

1.1 Appendix A.1: Proof of Proposition 1

(i) Suppose that all solvers except solver i have performance according to the best-response performance function \(q^{*}(a_{i})\), and \(q^{*}(a_{i})\) is continuously differentiable and increasing in the ability level \(a_{i}\). Then,

$$\begin{aligned} \hbox{Pr}(q_{i}>q^{*})=\hbox{Pr}(q_{i}^{-1}(q_{i})>q^{*,-1}(q^{*})), \end{aligned}$$

where \(q_{i}^{-1}(\cdot )\) and \(q^{*,-1}(\cdot )\) are the reverse functions of \(q_{i}(\cdot )\) and \(q^{*}(\cdot )\), respectively. Solver i with ability \(a_{i}\) will solve Problem (1) to determine her performance \(q_{i}\). In equilibrium, \(q_{i}(\cdot )=q^{*}(\cdot )\) and \(q^{*}(a_{i})=e^{*}(a_{i})\cdot a_{i}\). By the first-order condition of Problem (1), we obtain

$$\begin{aligned} \sum _{j=1}^{L}U(V_{j})S_{j}^{n}(a_{i})\frac{a_{i}}{c}-[(e^{*})^{\prime }(a_{i})+e_{i}]=0, \end{aligned}$$

where \(S_{j}^{n}(a_{i})=\frac{(n-1)!}{(j-1)!(n-j)!}F(a_{i})^{n-j-1}(1-F(a_{i}))^{j-2}f(a_{i})((n-j)(1-F(a_{i}))-(j-1)F(a_{i}))\). Since \(q^{*}(a_{i})\) is increasing, the least-ability solver has no chance of receiving the awards, which yields \(e^{*}(\underline{a})=0\). Thus, we can generate the equilibrium effort and performance as follows:

$$\begin{aligned} e^{*}(a_{i})=\frac{1}{a_{i}}\sum _{j=1}^{L}U(V_{j})\int _{\underline{a}}^{a_{i}}S_{j}^{n}(a)\frac{a}{c}da, \end{aligned}$$

and

$$\begin{aligned} q^{*}(a_{i})=\sum _{j=1}^{L}U(V_{j})\int _{\underline{a}}^{a_{i}}S_{j}^{n}(a)\frac{a}{c}da. \end{aligned}$$

In the end, we check that the equilibrium performance \(q^{*}(a_{i})\) is continuously differentiable and increasing in the ability level \(a_{i}\). Note that the PDF \(f_{j}^{n}(\cdot )=\frac{n!}{(j-1)!(n-j)!}(1-F(\cdot ))^{j-1}{F(\cdot )}^{n-j}f(\cdot )\); then we can obtain:

$$\begin{aligned} \sum _{j=1}^{L}U(V_{j})S_{j}^{n}(a_{i})=\sum _{j=1}^{L}(U(V_{j})-U(V_{j+1}))f_{j}^{n-1}(a_{i}). \end{aligned}$$

Therefore, \((q^{*})^{\prime }(a_{i})>0\).

(ii) By the definition, the EAQ is given as

$$\begin{aligned} \mathbb {E}\left[ \frac{\sum _{i=1}^{n}q_{i}^*}{n}\right] =\mathbb {E}[q^*(a_{i})]=\int _{\underline{a}}^{\overline{a}}\int _{\underline{a}}^{a_{i}}\sum _{j=1}^{L}(U(V_{j})-U(V_{j+1}))f_{j}^{n-1}(a)\frac{a}{c}daf(a_{i})da_{i}. \end{aligned}$$

Using the Fubini Theorem, we can obtain the following:

$$\begin{aligned} \int _{\underline{a}}^{\overline{a}}\int _{\underline{a}}^{a_{i}}f_{j}^{n-1}(a)\frac{a}{c}daf(a_{i})da_{i}=\int _{\underline{a}}^{\overline{a}}f_{j}^{n-1}(a)\frac{a}{c}(1-F(a))da. \end{aligned}$$

Then, \(EAQ=\sum _{j=1}^{L}\int _{\underline{a}}^{\overline{a}}(U(V_{j})-U(V_{j+1}))f_{j}^{n-1}(a)\frac{a}{c}(1-F(a))da\).

(iii) Similar to (ii), \(EMQ=\sum _{j=1}^{L}\int _{\underline{a}}^{\overline{a}}(U(V_{j})-U(V_{j+1}))f_{j}^{n-1}(a)\frac{a}{c}(1-F_{1}^{n}(a))da\). \(\square \)

1.2 Appendix A.2: Proof of Theorem 1

(i) By the expression of EMQ, given any L, the optimization problem can be rewritten as

$$\begin{aligned} \max _{V_{1}\ge V_{2}\ge \cdots \ge V_{L}}\sum _{j=1}^{L}U(V_{j})l_{j}^{n}, \end{aligned}$$
(2)

where \(l_{j}^{n}=\int _{\underline{a}}^{\overline{a}}f_{j}^{n-1}(a)a(1-F_{1}^{n}(a))da-\int _{\underline{a}}^{\overline{a}}f_{j-1}^{n-1}(a)a(1-F_{1}^{n}(a))da\) for \(2\le j\le n-1\), \(l_{n}^{n}=-\int _{\underline{a}}^{\overline{a}}f_{n-1}^{n-1}(a)a(1-F_{1}^{n}(a))da<0\), and \(l_{1}^{n}=\int _{\underline{a}}^{\overline{a}}f_{1}^{n-1}(a)a(1-F_{1}^{n}(a))da>0\). Next, we show that

$$\begin{aligned} l_{j}^{n}>0\quad \text {and decreases in}\,j\quad \text {for any}\quad 1\le j\le L, \end{aligned}$$

when \(n\ge n_{L}\) for some critical value \(n_{L}\); and

$$\begin{aligned} \text {there exists}\,i\,\text {such that}\quad l_{j}^{n}>0\quad \text {for}\quad 1\le j\le i,\quad \text {and}\quad l_{j}^{n}\le 0\quad \text {for}\quad i+1\le j\le n. \end{aligned}$$

Note that, this proof can be obtained in “Appendix A.3”.

In this case, by Problem (2), we can verify that a single-award scheme is optimal if \(U(\cdot )\) is linear or convex, i.e., the solvers are risk-neutral or risk-preferred. If \(U(\cdot )\) is concave, suppose that \(l_{j}^{n}>0\) for any \(1\le j\le L\), we claim that there must be at least L awards at optimality. Suppose that there are \(L-1\) awards, i.e., \(r_{1}\ge r_{2}\ge \cdots \ge r_{L-1}>0\), and \(r_{L}=0\). Since \(l_{L-1}^{n}>l_{L}^{n}>0\), let \(\hat{r}_{L-1}\) and \(\hat{r}_{L}\) satisfy that

$$\begin{aligned} \hat{r}_{L-1}+\hat{r}_{L}=r_{L-1}\quad \text {and}\quad U^{\prime }(V\hat{r}_{L-1})l_{L-1}^{n}=U^{\prime }(V\hat{r}_{L})l_{L}^{n}\quad \text {when}\quad U^{\prime \prime }(\cdot )<0. \end{aligned}$$

In this way, we can verify that the allocation is not optimal. Therefore, we have, if \(l_{j}^{n}>0\) for any \(1\le j\le L\), then \(r_{1}^*\ge r_{2}^*\ge \cdots \ge r_{L}^*>0\), i.e., \(L^*\ge L\). That is, a multiple-award scheme is optimal with the optimal number of awards being \(L^*\ge L\) if the solvers are risk-averse.

(ii) Also, if the EAQ is preferred, the optimization problem is given as

$$\begin{aligned} \max _{V_{1}\ge V_{2}\ge \cdots \ge V_{L}}\sum _{j=1}^{L}U(V_{j})s_{j}^{n}, \end{aligned}$$

where \(s_{j}^{n}=\int _{\underline{a}}^{\overline{a}}f_{j}^{n-1}(a)a(1-F(a))da-\int _{\underline{a}}^{\overline{a}}f_{j-1}^{n-1}(a)a(1-F(a))da\) for \(2\le j\le n-1\), \(s_{n}^{n}=-\int _{\underline{a}}^{\overline{a}}f_{n-1}^{n-1}(a)a(1-F(a))da<0\), and \(s_{1}^{n}=\int _{\underline{a}}^{\overline{a}}f_{1}^{n-1}(a)a(1-F(a))da>0\). Similarly, if the EAQ is preferred, we also only need to show that

$$\begin{aligned} s_{j}^{n}>0\quad \text {and decreases in}\,j\quad \text {for any}\quad 1\le j\le L, \end{aligned}$$

when \(n\ge n_{L}\) for some critical value \(n_{L}\); and

$$\begin{aligned} \text {there exists}\,i\,\text {such that}\quad s_{j}^{n}>0\quad \text {for}\quad 1\le j\le i,\quad \text {and}\quad s_{j}^{n}\le 0\quad \text {for}\quad i+1\le j\le n. \end{aligned}$$

Note that, this proof can be obtained in “Appendix A.4”.

Then, we can verify that when the EAQ is preferred, a single-award scheme is optimal if the solvers are risk-neutral or risk-preferred; a multiple-award scheme is optimal with the optimal number of awards being \(L^*\ge L\) if the solvers are risk-averse. \(\square \)

1.3 Appendix A.3: Property of \(l_{j}^{n}\)

Using integration by parts, we have

$$\begin{aligned}{} & {} \int _{\underline{a}}^{\overline{a}}f_{j}^{n-1}(a)a(1-F_{1}^{n}(a))da \\{} & {} \quad =\int _{\underline{a}}^{\overline{a}}a(1-F_{1}^{n}(a))\frac{(n-1)!}{(j-1)!(n-1-j)!}(1-F(a))^{j-1}{F(a)}^{n-1-j}f(a)da \\{} & {} \quad =\int _{\underline{a}}^{\overline{a}}a(1-F_{1}^{n}(a))\frac{(n-1)!}{(j-2)!(n-j)!}(1-F({a}))^{j-2}{F({a})}^{n-j}f(a)da \\{} & {} \qquad -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j)!}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F_{1}^{n}(a))]^{\prime }da. \end{aligned}$$

Then, \(l_{j}^{n}=\int _{\underline{a}}^{\overline{a}}f_{j}^{n-1}(a)a(1-F_{1}^{n}(a))da-\int _{\underline{a}}^{\overline{a}}f_{j-1}^{n-1}(a)a(1-F_{1}^{n}(a))da=-\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j)!}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F_{1}^{n}(a))]^{\prime }da,~j\ge 2\), and \(l_{1}^{n}=\int _{\underline{a}}^{\overline{a}}f_{1}^{n-1}(a)a(1-F_{1}^{n}(a))da>0\). Recall that \(F(a)=a^k\), by Lemma 1 in “Appendix A.9”, we have

$$\begin{aligned} l_{j}^{n}= & {} -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j)!}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F_{1}^{n}(a))]^{\prime }da \\= & {} -\frac{1}{k}\left[ \frac{(n-j+1)\cdot (n-j+2)\cdots (n-1)}{(n+\frac{1}{k}-j)\cdot (n+\frac{1}{k}-j+1)\cdots (n+\frac{1}{k}-1)}\right. \\{} & {} \left. -(nk+1)\frac{(n-j+1)\cdot (n-j+2)\cdots (n-1)}{(2n+\frac{1}{k}-j)\cdot (2n+\frac{1}{k}-j+1)\cdots (2n+\frac{1}{k}-1)}\right] . \end{aligned}$$

Since \(nk+1 \rightarrow \infty \) if \(n\rightarrow \infty \). Then, it is not hard to verify that there exists a critical value \(n^{j}\) such that \(n\ge n^{j}\), \(l_{j}^{n}>0\).

Using integration by parts and Lemma 1 in Appendix A.9, we have

$$\begin{aligned} l_{j}^{n}&= -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j)!}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F_{1}^{n}(a))]^{\prime }da \\ &= l_{j-1}^{n}+\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j+1)!}(1-F(a))^{j-1}{F(a)}^{n-j+1}\left[ \frac{[a(1-F_{1}^{n}(a))]^{\prime }}{f(a)}\right] ^{\prime }da, \end{aligned}$$

and

$$\begin{aligned} l_{j-1}^{n}-l_{j}^{n}&= -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j+1)!}(1-F(a))^{j-1}{F(a)}^{n-j+1}\left[ \frac{[a(1-F_{1}^{n}(a))]^{\prime }}{f(a)}\right] ^{\prime }da \\ &= -\frac{1}{k^{2}}\left[ (1-k)\frac{(n-j+2)\cdot (n-j+3)\cdots (n-1)}{(n+\frac{1}{k}-j)\cdot (n+\frac{1}{k}-j+1)\cdots (n+\frac{1}{k}-1)}\right. \\ &\quad \left. -(nk+1)(nk+1-k)\frac{(n-j+2)\cdot (n-j+3)\cdots (n-1)}{(2n+\frac{1}{k}-j)\cdot (2n+\frac{1}{k}-j+1)\cdots (2n+\frac{1}{k}-1)}\right] . \end{aligned}$$

Similarly, we have \(l_{j-1}^{n}>l_{j}^{n}\) if the number of solvers is sufficiently large. Finally, it is not hard to verify that \(a(1-F_{1}^{n}(a))\) is unimodal in a, by the approach in “Appendix A.8”, we can verify that there exists i such that \(l_{j}^{n}>0\) for \(1\le j\le i\), and \(l_{j}^{n}\le 0\) for \(i+1\le j\le n\). \(\square \)

1.4 Appendix A.4: Property of \(s_{j}^{n}\)

Using integration by parts, we have

$$\begin{aligned}{} & {} \int _{\underline{a}}^{\overline{a}}f_{j}^{n-1}(a)a(1-F(a))da \\{} & {} \quad =\int _{\underline{a}}^{\overline{a}}a(1-F(a))\frac{(n-1)!}{(j-1)!(n-1-j)!}(1-F(a))^{j-1}{F(a)}^{n-1-j}f(a)da \\{} & {} \quad =\int _{\underline{a}}^{\overline{a}}a(1-F(a))\frac{(n-1)!}{(j-2)!(n-j)!}(1-F({a}))^{j-2}{F({a})}^{n-j}f(a)da \\{} & {} \qquad -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j)!}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F(a))]^{\prime }da. \end{aligned}$$

Then, \(s_{j}^{n}=\int _{\underline{a}}^{\overline{a}}f_{j}^{n-1}(a)a(1-F(a))da-\int _{\underline{a}}^{\overline{a}}f_{j-1}^{n-1}(a)a(1-F(a))da=-\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j)!}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F(a))]^{\prime }da,~j\ge 2\), and \(s_{1}^{n}=\int _{\underline{a}}^{\overline{a}}f_{1}^{n-1}(a)a(1-F(a))da>0\). In “Appendix A.7”, we show that, if \([a(1-F(a))]\) is unimodal in a (this can be easily verified), then there exists a critical value \(n_{L}\) such that \(n\ge n_{L}\), \(s_{j}^{n}>0\).

Using integration by parts, we have

$$\begin{aligned} s_{j}^{n}= & {} -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j)!}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F(a))]^{\prime }da \\= & {} s_{j-1}^{n}+\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{(j-1)!(n-j+1)!}(1-F(a))^{j-1}{F(a)}^{n-j+1}\left[ \frac{[a(1-F(a))]^{\prime }}{f(a)}\right] ^{\prime }da. \end{aligned}$$

It is not hard to verify that \(\frac{[a(1-F(a))]^{\prime }}{f(a)}\) is decreasing or unimodal in a. By the approach in Appendix A.7, we can also verify that \(s_{j-1}^{n}-s_{j}^{n}>0\) if the number of solvers is sufficiently large. In the end, in Appendix A.8, we have shown that there exists i such that \(s_{j}^{n}>0\) for \(1\le j\le i\), and \(s_{j}^{n}\le 0\) for \(i+1\le j\le n\). \(\square \)

1.5 Appendix A.5: Proof of Theorem 2

(i) If the EMQ is preferred and the number of awards is L, we can verify that the optimal award allocation satisfies \(\frac{r_{j}^{*}}{r_{i}^{*}}=(\frac{l_{j}^{n}}{l_{i}^{n}})^{\frac{1}{1-b}}\) for \(1\le i\le j\le L\), where \(l_{j}^{n}\) is defined in the proof of Theorem 1. Next, we show that

$$\begin{aligned} l_{j-1}^{n}-l_{j}^{n}>l_{j}^{n}-l_{j+1}^{n}\quad \text {for any}\quad 2\le j\le L-1; \end{aligned}$$

in this case, it is not hard to verify that \(r_{j-1}^{*}-r_{j}^{*}>r_{j}^{*}-r_{j+1}^{*}\), i.e., the award allocation manner is unequal and convex.

Using integration by parts, we have

$$\begin{aligned} l_{j}^{n}-l_{j+1}^{n}&= -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{j!(n-j)!}(1-F(a))^{j}{F(a)}^{n-j}\left[ \frac{[a(1-F_{1}^{n}(a))]^{\prime }}{f(a)}\right] ^{\prime }da \\ &= l_{j-1}^{n}-l_{j}^{n}+\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{j!(n-j+1)!}(1-F(a))^{j}{F(a)}^{n-j+1}\left\{ \frac{\left[ \frac{[a(1-F_{1}^{n}(a))]^{\prime }}{f(a)}\right] ^{\prime }}{f(a)}\right\} ^{\prime }da. \end{aligned}$$

In addition, by Lemma 1 in Appendix A.9, we have

$$\begin{aligned}{} & {} -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{j!(n-j+1)!}(1-F(a))^{j}{F(a)}^{n-j+1}\left\{ \frac{\left[ \frac{[a(1-F_{1}^{n}(a))]^{\prime }}{f(a)}\right] ^{\prime }}{f(a)}\right\} ^{\prime }da \\{} & {} \quad =-\frac{1}{k^{3}}\left[ (1-k)(1-2k)\frac{(n-j+2)\cdot (n-j+3)\cdots (n-1)}{(n+\frac{1}{k}-j-1)\cdot (n+\frac{1}{k}-j)\cdots (n+\frac{1}{k}-1)}\right. \\{} & {} \qquad -(nk+1)(nk+1-k)(nk+1-2k)\\{} & {} \qquad \left. \frac{(n-j+2)\cdot (n-j+3)\cdots (n-1)}{(2n+\frac{1}{k}-j-1)\cdot (2n+\frac{1}{k}-j)\cdots (2n+\frac{1}{k}-1)}\right] . \end{aligned}$$

Since \(\frac{(nk+1)(nk+1-k)(nk+1-2k)}{(1-k)(1-2k)} \rightarrow \pm \infty \) when \(n\rightarrow \infty \), we have there exists a critical value \(n^{L}\) such that \(n\ge n^{L}\), \(l_{j-1}^{n}-l_{j}^{n}>l_{j}^{n}-l_{j+1}^{n}\).

(ii) If the EAQ is preferred, the case is similar. We only need to verify that \(s_{j-1}^{n}-s_{j}^{n}>s_{j}^{n}-s_{j+1}^{n}\).

Using integration by parts, we have

$$\begin{aligned} s_{j}^{n}-s_{j+1}^{n}&= -\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{j!(n-j)!}(1-F(a))^{j}{F(a)}^{n-j}\left[ \frac{[a(1-F(a))]^{\prime }}{f(a)}\right] ^{\prime }da \\ &= s_{j-1}^{n}-s_{j}^{n}+\int _{\underline{a}}^{\overline{a}}\frac{(n-1)!}{j!(n-j+1)!}(1-F(a))^{j}{F(a)}^{n-j+1}\left\{ \frac{\left[ \frac{[a(1-F(a))]^{\prime }}{f(a)}\right] ^{\prime }}{f(a)}\right\} ^{\prime }da. \end{aligned}$$

We can verify that \(\frac{[\frac{[a(1-F_{1}^{n}(a))]^{\prime }}{f(a)}]^{\prime }}{f(a)}\) is decreasing or unimodal in a. By the approach in “Appendix A.7”, we can also verify that \(s_{j-1}^{n}-s_{j}^{n}>s_{j}^{n}-s_{j+1}^{n}\) if the number of solvers is sufficiently large. \(\square \)

1.6 Appendix A.6: Proof of Proposition 2

(i) When the EMQ is preferred, by the proof of Theorem 1, we can easily verify that \(r_{j}^{*}/r_{i}^{*}=({l}_{j}^{n}/{l}_{i}^{n})^{\frac{1}{1-b}}\) where \({l}_{j}^{n}\) is defined in the proof of Theorem 1. As a result, we have

$$\begin{aligned} \frac{\partial r_{1}^{*}}{\partial b}=\frac{({l}_{1}^{n})^{\frac{1}{1-b}}}{(1-b)^2}\frac{\sum _{j=1}^{L^*}\big (\log ({l}_{1}^{n})({l}_{j}^{n})^{\frac{1}{1-b}}-({l}_{j}^{n})^{\frac{1}{1-b}}\log \big ({l}_{j}^{n})\big )}{\big (\sum _{j=1}^{L^*}({l}_{j}^{n})^\frac{1}{1-b}\big )^{2}}. \end{aligned}$$

By the proof of Theorem 1, we have \({l}_{1}^{n}>{l}_{2}^{n}>\cdots>{l}_{L^*}^{n}>0\), then \(\log ({l}_{1}^{n})>\log ({l}_{j}^{n})\) for any \(2\le j\le L^*\). Thus, \(r_{1}^{*}\) increases with b. Similarly, we can obtain that \(r_{L^*}^{*}\) decreases with b. In addition, when the EAQ is preferred, by the proof of Theorem 1, we can also verify this result.

(ii) When the EMQ is preferred, by (i), we have \((r^*_{j-1}-r^*_{j})/(r^*_{j}-r^*_{j+1})=\big (({l}_{j-1}^{n})^{\frac{1}{1-b}}-({l}_{j}^{n})^{\frac{1}{1-b}}\big )/\big (({l}_{j}^{n})^{\frac{1}{1-b}}-({l}_{j+1}^{n})^{\frac{1}{1-b}}\big )\). Let \(a_{1}={l}_{j-1}^{n}\), \(a_{2}={l}_{j}^{n}\), \(a_{3}={l}_{j+1}^{n}\), then \(a_{1}>a_{2}>a_{3}\). Let \(H(x)=(a_{1}^{x}-a_{2}^{x})/(a_{2}^{x}-a_{3}^{x})\), we have

$$\begin{aligned} \frac{\partial H(x)}{\partial x}&= \frac{(a_{1}^{x}\log (a_{1})-a_{2}^{x}\log \big (a_{2})\big )(a_{2}^{x}-a_{3}^{x})-(a_{1}^{x}-a_{2}^{x})(a_{2}^{x}\log (a_{2})-a_{3}^{x}\log \big (a_{3})\big )}{(a_{2}^{x}-a_{3}^{x})^{2}} \\ &= \frac{(a_{1}^{x}a_{2}^{x}-a_{1}^{x}a_{3}^{x})\log (\frac{a_{1}}{a_{2}})-(a_{1}^{x}a_{3}^{x}-a_{2}^{x}a_{3}^{x})\log (\frac{a_{2}}{a_{3}})}{(a_{2}^{x}-a_{3}^{x})^{2}} \\ &= \frac{a_{1}^{x}a_{3}^{x}-a_{2}^{x}a_{3}^{x}}{(a_{2}^{x}-a_{3}^{x})^{2}}\left( \left( \frac{a_{1}^{x}a_{2}^{x}-a_{1}^{x}a_{3}^{x}}{a_{1}^{x}a_{3}^{x}-a_{2}^{x}a_{3}^{x}}\right) \log \left( \frac{a_{1}}{a_{2}}\right) -\log \left( \frac{a_{2}}{a_{3}}\right) \right) . \end{aligned}$$

Since \(\lim _{x \rightarrow \infty }(a_{1}^{x}a_{2}^{x}-a_{1}^{x}a_{3}^{x})/(a_{1}^{x}a_{3}^{x}-a_{2}^{x}a_{3}^{x}) \rightarrow \infty \), then there exists a sufficiently large x such that \(\partial H(x)/\partial x>0\). Therefore, there exists a \(\tilde{b}\), if \(\tilde{b}<b<1\), then \((r^*_{j-1}-r^*_{j})/(r^*_{j}-r^*_{j+1})\) increases with b. In addition, when the EAQ is preferred, by the proof of Theorem 1, we can also verify this result. Note that, the proof of Proposition 2 is similar to the proofs of Propositions 1 and B.1 in [17]. \(\square \)

1.7 Appendix A.7: Complement A in the Proof of Theorem 1

Below, we show that there exists a critical value \(n_{L}\) such that \(n\ge n_{L}\), \(s_{j}^{n}>0\), where \(s_{j}^{n}\) is defined in the proof of Theorem 1. Since \(F(a)=a^{k}\), then \(a(1-F(a))=a-a^{k+1}\), \([a(1-F(a))]^{\prime }=1-(k+1)a^{k}\). We can easily obtain that \(a(1-F(a))\) is unimodal in a, i.e., there exists \(\hat{a}\in (\underline{a},\overline{a})\), such that if \(a\in (\underline{a},\hat{a})\), \(a(1-F(a))\) is increasing; if \(a\in (\hat{a},\overline{a})\), \(a(1-F(a))\) is decreasing. Let

$$\begin{aligned} g_{j}(n)=\int _{\underline{a}}^{\overline{a}}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F(a))]^{\prime }da, \end{aligned}$$

we have

$$\begin{aligned} g_{j}^{\prime }(n)=\frac{\partial g_{j}(n)}{\partial n}=\int _{\underline{a}}^{\overline{a}}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F(a))]^{\prime }\log (F(a))da. \end{aligned}$$

Then, \(\forall ~\epsilon >0\), we have

$$\begin{aligned}{} & {} g_{j}^{\prime }(n+\epsilon )-g_{j}^{\prime }(n)\\{} & {} \quad =\int _{\underline{a}}^{\overline{a}}(1-F(a))^{j-1}{F(a)}^{n-j}(F(a)^{\epsilon }-1)[a(1-F(a))]^{\prime }\log (F(a))da \\{} & {} \quad =\int _{\underline{a}}^{\hat{a}}(1-F(a))^{j-1}{F(a)}^{n-j}(F(a)^{\epsilon }-1)[a(1-F(a))]^{\prime }\log (F(a))da \\{} & {} \qquad +\int _{\hat{a}}^{\overline{a}}(1-F(a))^{j-1}{F(a)}^{n-j}(F(a)^{\epsilon }-1)[a(1-F(a))]^{\prime }\log (F(a))da \\{} & {} \quad >\int _{\underline{a}}^{\hat{a}}(1-F(a))^{j-1}{F(a)}^{n-j}(F(\hat{a})^{\epsilon }-1)[a(1-F(a))]^{\prime }\log (F(a))da \\{} & {} \qquad +\int _{\hat{a}}^{\overline{a}}(1-F(a))^{j-1}{F(a)}^{n-j}(F(\hat{a})^{\epsilon }-1)[a(1-F(a))]^{\prime }\log (F(a))da \\{} & {} \quad =(F(\hat{a})^{\epsilon }-1)g_{j}^{\prime }(n). \end{aligned}$$

Thus, \(g_{j}^{\prime }(n+\epsilon )>F(\hat{a})^{\epsilon }g_{j}^{\prime }(n)\), which implies that if

$$\begin{aligned} g_{j}^{\prime }(\hat{n})\ge 0,\quad \text {then for any}\quad n\ge \hat{n},\quad g_{j}^{\prime }(n)>0. \end{aligned}$$

It is easy to see that \(g_{1}(2)<0\), and \(g_{1}(\infty )=0\), then there exists \(n_{1}\ge 2\), such that

$$\begin{aligned} g_{1}^{\prime }(n_{1})\ge 0, \quad \text {and for}\quad n\ge n_{1},\quad g_{1}(n)<0. \end{aligned}$$

Then,

$$\begin{aligned} g_{2}(n_{1})=g_{1}(n_{1})-g_{1}(n_{1}+1)<0. \end{aligned}$$

We can also obtain that \(g_{2}(\infty )=0\), then there exists \(n_{2}\), such that \(g_{2}^{\prime }(n_{2})\ge 0\), and for \(n\ge n_{2}\), \(g_{2}(n)<0\). Using this approach repeatedly, for any given L, we can obtain that there exists \(n_{L}\), such that \(g_{L}^{\prime }(n_{L})\ge 0\), and for

$$\begin{aligned} n\ge n_{L},~g_{j}(n)<0\quad \text {for any}\quad 1\le j\le L. \end{aligned}$$

Therefore, we obtain that, there exists a critical value \(n_{L}\) such that

$$\begin{aligned} n\ge n_{L},\quad s_{j}^{n}>0\quad \text {for any}\quad 1\le j\le L. \end{aligned}$$

\(\square \)

1.8 Appendix A.8: Complement B in the Proof of Theorem 1

In this part, we show that there exists i such that \(s_{j}^{n}>0\) for \(1\le j\le i\), and \(s_{j}^{n}\le 0\) for \(i+1\le j\le n\). Let

$$\begin{aligned} G_{j}^{n}=g_{j+1}(n)-g_{j}(n)=\int _{\underline{a}}^{\overline{a}}(1-F(a))^{j-1}{F(a)}^{n-j}[a(1-F(a))]^{\prime }(-F(a))da, \end{aligned}$$

where \(g_{j}(n)\) is defined in “Appendix A.7”. Then, by a similar approach in “Appendix A.7”, we can obtain

$$\begin{aligned} G_{j+1}^{n}-G_{j}^{n}>-F(\hat{a})G_{j}^{n}, \end{aligned}$$

which implies that \(G_{j+1}^{n}>(1-F(\hat{a}))G_{j}^{n}\). This suggests that if \(g_{j+1}(n)>g_{j}(n)\), then

$$\begin{aligned} g_{i+1}(n)>g_{i}(n)\quad \text {for}\quad i\ge j. \end{aligned}$$

Also, it is not difficult to verify that \(g_{1}(n)<0\) and \(g_{n}(n)>0\) for a fixed n. Via simple calculation, we can obtain that

$$\begin{aligned} \text {there exists}\,i\,\text {such that}\quad g_{j}(n)<0\quad \text {for}\quad 1\le j\le i,\quad \text {and}\quad g_{j}(n)\ge 0\quad \text {for}\quad i+1\le j\le n. \end{aligned}$$

This equals that there exists i such that \(s_{j}^{n}>0\) for \(1\le j\le i\), and \(s_{j}^{n}\le 0\) for \(i+1\le j\le n\). \(\square \)

1.9 Appendix A.9: A supporting lemma

Lemma 1

Let \(B(P,Q)=\int _{0}^{1}x^{P-1}(1-x)^{Q-1}dx\) for any \(P\ge 1,~Q\ge 1\), then, \(B(P,Q)=\frac{(Q-1)!}{P\cdot (P+1)\cdots (P+Q-1)}\).

This lemma can be easily checked, we thus omit it.

1.10 Appendix A.10: The utility function \(U(V)=V^{b}\) can be generalized

First, Theorem 1 holds if the utility function \(U(\cdot )\) satisfies \(U^{\prime }(0)=+\infty \) when \(U^{\prime \prime }(\cdot )<0\) and no constraint when \(U^{\prime \prime }(\cdot )\ge 0\), which can be easily verified by the proof of Theorem 1. Note that, for the utility function \(U(\cdot )\) satisfying \(U^{\prime }(0)=+\infty \) when \(U^{\prime \prime }(\cdot )<0\), it is not hard to verify that in this case, \(r_{j}^*>0\) if \(l_{j}^{n}>0\) (or \(s_{j}^{n}>0\)), which yields Theorem 1. Second, by the proof of Theorem 2, we can check that Theorem 2 holds when \(U(V)=\log (V)\) (see [9]). These imply that our results hold for general solvers’ utility functions.

1.11 Appendix A.11: Some numerical study

As discussed above, the award scheme deeply depends on \(l_{j}^{n}\) and \(s_{j}^{n}\), which are defined above. By the proof of Theorems 1 and 2, if \(l_{j}^{n}>0\) (\(s_{j}^{n}>0\)) and decreases in j for any \(1\le j\le L\) and \(l_{j-1}^{n}-l_{j}^{n}>l_{j}^{n}-l_{j+1}^{n}\) (\(s_{j-1}^{n}-s_{j}^{n}>s_{j}^{n}-s_{j+1}^{n}\)) for any \(2\le j\le L-1\), then when the solvers are risk-averse, a multiple-award scheme is optimal, and the award allocation manner is unequal and convex. Below, we give some numerical studies. Using Monte Carlo simulation in R software, we can obtain \(l_{j}^{n}\) and \(s_{j}^{n}\), which are listed in Tables 3 and 4. By the above analysis, for \(k=1\) (\(F(a)=a^k\)), an unequal and convex allocation method can hold when \(n\ge 10\) in the EMQ case; an unequal and convex allocation method can hold when \(n\ge 8\) in the EAQ case.

Table 3 \(l_{j}^{n}\) in the EMQ case
Table 4 \(s_{j}^{n}\) in the EAQ case

In addition, we numerically give the \(l_{j}^{n}\) and \(s_{j}^{n}\) based on other distributions of solvers (i.e., f(a)), which are listed in Tables 567 and 8. By the above analysis, we have for general cases, if the EAQ or EMQ is considered, when the solvers are risk-averse, a multiple-award scheme is optimal, and the award allocation manner is unequal and convex.

Table 5 Numerical study I
Table 6 Numerical study II
Table 7 Numerical study III
Table 8 Numerical study IV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X. Award scheme in productivity-based contests. Optim Lett 18, 1071–1093 (2024). https://doi.org/10.1007/s11590-023-02021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-023-02021-9

Keywords

Navigation