Skip to main content
Log in

A Version of the Random Directed Forest and its Convergence to the Brownian Web

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Several authors have studied convergence in distribution to the Brownian web under diffusive scaling of systems of Markovian random walks. In a paper by R. Roy, K. Saha and A. Sarkar, convergence to the Brownian web is proved for a system of coalescing random paths—the random directed forest—which are not Markovian. Paths in the random directed forest do not cross each other before coalescence. Here, we study a variation of the random directed forest where paths can cross each other and prove convergence to the Brownian web. This provides an example of how the techniques to prove convergence to the Brownian web for systems allowing crossings can be applied to non-Markovian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Belhaouari, S., Mountford, T., Sun, R., Valle, G.: Convergence and sharp results for the voter model interfaces. Electron. J. Probab. 11, 279–296 (2006)

    Article  MATH  Google Scholar 

  2. Coletti, C., Fontes, L.R., Dias, E.S.: Scaling limit for a drainage network model. J. Appl. Probab. 46(4), 1184–1197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coletti, C., Valle, G.: Convergence to the brownian web for a generalization of the drainage network model. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 50(3), 899–919 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Durrett, R.: Probability: Teory and Eamples. Cambridge Uiversity Pess, Cambridge (2010)

    Book  Google Scholar 

  5. Ferrari, P., Fontes, L.R., Xian-Yuan, W.: Two-dimensional poisson trees converge to the brownian web. Annales de l’Institut Henri Poincaré. B, Probab. Stat. 41, 851–858 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fontes, L.R., Isopi, M., Newman, C.M., Ravishankar, K.: The brownian web: characterization and convergence. Ann. Probab. 32(4), 2857–2883 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fontes, L.R., Valencia, L., Valle, G.: Scaling limit of the radial poissonian web. Electron. J. Probab. 20, 1–40 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Newman, C.M., Ravishankar, K., Sun, R.: Convergence of coalescing nonsimple random walks to the brownian web. Electron. J. Probab. 10, 21–60 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Roy, R., Saha, K., Sarkar, A.: Random directed forest and the brownian web. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 52(3), 1106–1143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schertzer, E., Sun, R., Swart, J.M.: The brownian web, the brownian net, and their universality. In: Pierluigi, C., Cristian, G. (eds.) Random Processes and Some Applications, pp. 270–368. Cambridge University Press, Cambridge (2017)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Maria Eulalia Vares, Leandro Pimentel and Luiz Renato Fontes for useful comments and suggestions. We would also like to thank the anonymous referee for useful feedback and suggestions regarding the paper.

Funding

G. Valle was supported by CNPq Grant 308006/2018-6 and FAPERJ Grant E-26/202.636/2019. L. Zuaznábar was supported by CAPES

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glauco Valle.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. A Technical Estimate

Appendix A. A Technical Estimate

Lemma A.1

Let N be some positive integer random variable and \((\zeta _n)_{n\ge 1}\) a nonnegative sequence of identically distributed random variables. If for some \(k\ge 1, \delta>0 \text { and } l>\frac{(k+2)(1+\delta )}{\delta }\), we have \(\mathbb {E}[\zeta _1^{k(1+\delta )}]\) and \(\mathbb {E}[N^l]\) finite, then for \(S:=\sum _{n=1}^{N}\zeta _n\) we get that \(\mathbb {E}[S^k]\) is also finite.

Proof

We have that \(0\le S\le N\max _{1\le j\le N}\zeta _j\) what implies that

$$\begin{aligned} S^k\le N^k\max _{1\le j\le N}\zeta ^k_j\le N^k\sum _{j=1}^{N}\zeta ^k_j. \end{aligned}$$

Hence,

$$\begin{aligned} \mathbb {E}\big [S^k\big ]&\le \mathbb {E}\Big [N^k\sum _{j=1}^{N}\zeta _j^k\Big ]=\sum _{n=1}^{\infty }n^k\sum _{j=1}^{n}\mathbb {E}\big [\mathbbm {1}_{\{N=n\}}\zeta ^k_j\big ]. \end{aligned}$$

Applying Hölder inequality, we get

$$\begin{aligned} \mathbb {E}\big [S^k\big ]\le \sum _{n=1}^{\infty }n^k\sum _{j=1}^{n}\mathbb {E}\big [\zeta _j^{k(1+\delta )}\big ]^{\frac{1}{1+\delta }}\mathbb {P}[N=n]^\frac{\delta }{1+\delta }=\mathbb {E}\big [\zeta _1^{k(1+\delta )}\big ]^{\frac{1}{1+\delta }}\sum _{n=1}^{\infty }n^{k+1}\mathbb {P}[N=n]^{\frac{\delta }{1+\delta }}. \end{aligned}$$

Applying Chebyshev inequality, we get that \(\mathbb {E}[S^k]\) is bounded above by

$$\begin{aligned} \mathbb {E}\big [\zeta _1^{k(1+\delta )}\big ]^{\frac{1}{1+\delta }}\sum _{n=1}^{\infty }n^{k+1}\frac{\mathbb {E}[N^l]^\frac{\delta }{1+\delta }}{n^{\frac{l\delta }{1+\delta }}}=\mathbb {E}\big [\zeta _1^{k(1+\delta )}\big ]^{\frac{1}{1+\delta }}\mathbb {E}[N^l]^{\frac{\delta }{1+\delta }}\sum _{n=1}^{\infty }\frac{1}{n^{\frac{l\delta }{1+\delta }-(k+1)}}<\infty . \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle, G., Zuaznábar, L. A Version of the Random Directed Forest and its Convergence to the Brownian Web. J Theor Probab 36, 948–1002 (2023). https://doi.org/10.1007/s10959-022-01202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-022-01202-z

Keywords

Mathematics Subject Classification (2020)

Navigation