Skip to main content
Log in

Limiting Dynamics for Stochastic FitzHugh–Nagumo Lattice Systems in Weighted Spaces

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, stochastic FitzHugh–Nagumo lattice system with nonlinear noise in weighted spaces is considered. Firstly, the well-posedness of solution of such system in a weighted space \(L^2(\Omega ,l^2_\sigma \times l^2_\sigma )\) is established, based on which we further prove the existence and uniqueness of weak pullback mean random attractor in the weighted space. Then the existence and uniqueness of invariant measure are proved in the weighted space \(l^2_\sigma \times l^2_\sigma \) as well as exponentially mixing property in the sense of Wasserstein metric. Moreover, the limit behaviors of invariant measure in the weighted space \(l^2_\sigma \times l^2_\sigma \) are also investigated with respect to noise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow, S.N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149(2), 248–291 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  Google Scholar 

  3. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems. Int. J. Bifurcat. Chaos 11, 143–153 (2001)

    Article  MathSciNet  Google Scholar 

  4. Han, X., Kloeden, P.E., Usman, B.: Upper semi-continuous convergence of attractors for a Hopfield-type lattice model. Nonlinearity 33, 1881–1906 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  5. Caraballo, T., Morillas, F., Valero, J.: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearity. J. Differ. Equ. 253(2), 667–693 (2012)

    Article  ADS  Google Scholar 

  6. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1, 445–466 (1961)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosci. 54, 181–190 (1981)

    Article  MathSciNet  Google Scholar 

  8. Jones, C.K.R.T.: Stability of the traveling wave solution of the FitzHugh–Nagumo System. Trans. Am. Math. Soc. 286, 431–469 (1984)

    Article  Google Scholar 

  9. Wang, B.: Dynamical behavior of the almost-periodic discrete FitzHugh–Nagumo systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 1673–1685 (2007)

    Article  MathSciNet  Google Scholar 

  10. Boughoufala, A.M., Abdallah, A.Y.: Attractor for FitzHugh–Nagumo lattice equations with almost periodic nonlinear parts. Discret. Contin. Dyn. Syst. Ser. B 26(3), 1549–1563 (2021)

    Google Scholar 

  11. Huang, J.: The random attractor of stochastic FitzHugh–Nagumo equations in an infinite lattice with white noises. Phys. D Nonlinear Phenom. 233, 83–94 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gu, A., Li, Y.: Singleton sets random attractor for stochastic FitzHugh–Nagumo lattice equations driven by fractional Brownian motions. Commun. Nonlinear Sci. Numer. Simul. 19, 3929–3937 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Han, X., Shen, W., Zhou, S.: Random attractors for stochastic lattice dynamical systems in weighted spaces. J. Differ. Equ. 250, 1235–1266 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bates, P.W., Lu, K., Wang, B.: Attractors of non-autonomous stochastic lattice systems in weighted spaces. Phys. D Nonlinear Phenom. 289, 32–50 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Li, D., Shi, L., Wang, X.: Long term behavior of stochastic discrete complex Ginzburg–Landau equations with time delays in weighted spaces. Discret. Contin. Dyn. Syst. Ser. B 24(9), 5121–5148 (2019)

    MathSciNet  Google Scholar 

  16. Van Vleck, E., Wang, B.: Attractors for lattice FitzHugh–Nagumo systems. Phys. D Nonlinear Phenom. 212, 317–336 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wang, X., Zhou, S.: Random attractors for non-autonomous stochastic lattice FitzHugh–Nagumo systems with random coupled coefficients. Taiwan. J. Math. 20(3), 589–616 (2016)

    Article  MathSciNet  Google Scholar 

  18. Caraballo, T., Han, X.: Applied Nonautonomous and Random Dynamical Systems: Applied Dynamical Systems. Springer, Cham (2017)

    Google Scholar 

  19. Wang, B.: Weak pullback attractors for mean random dynamical systems in Bochner spaces. J. Dyn. Differ. Equ. 31, 2177–2204 (2019)

    Article  MathSciNet  Google Scholar 

  20. Wang, B., Wang, R.: Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise. Stoch. Anal. Appl. 38(2), 213–237 (2020)

    Article  MathSciNet  Google Scholar 

  21. Wang, B.: Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise. J. Math. Anal. Appl. 477(1), 104–132 (2019)

    Article  MathSciNet  Google Scholar 

  22. Chen, Z., Wang, B.: Weak mean attractors and invariant measures for stochastic Schrödinger delay lattice systems. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-10085-3

    Article  Google Scholar 

  23. Wang, R.: Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping. J. Dyn. Differ. Equ. 33, 767–803 (2021)

    Article  MathSciNet  Google Scholar 

  24. Wang, B.: Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise. J. Differ. Equ. 268(1), 1–59 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, R., Guo, B., Wang, B.: Well-posedness and dynamics of fractional FitzHugh–Nagumo systems on \({\mathbb{R}}^N\) driven by nonlinear noise. Sci. China Math. 64, 2395–2436 (2021)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Kloeden, P.E., Han, X.: Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise. Nonlinear Differ. Equ. Appl. 28(43), 1–31 (2021)

    MathSciNet  Google Scholar 

  27. Li, D., Wang, B., Wang, X.: Periodic measures of stochastic delay lattice systems. J. Differ. Equ. 272, 74–104 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Li, D., Wang, B., Wang, X.: Limiting behavior of invariant measures of stochastic delay lattice systems. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-10011-7

    Article  Google Scholar 

  29. Chen, Z., Li, X., Wang, B.: Invariant measures of stochastic delay lattice systems. Discret. Contin. Dyn. Syst. Ser. B 26(6), 3235–3269 (2021)

    MathSciNet  Google Scholar 

  30. Chen, Z., Wang, B.: Limit measures and ergodicity of fractional stochastic reaction-diffusion equations on unbounded domains. Stoch. Dyn. (2021). https://doi.org/10.1142/S0219493721400128

    Article  Google Scholar 

  31. Eckmann, J.P., Hairer, M.: Invariant measures for stochastic partial differential equations in unbounded domains. Nonlinearity 14, 133–151 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  32. Kim, J.: Periodic and invariant measures for stochastic wave equations. Electron. J. Differ. Equ. 2004, 1–30 (2004)

    MathSciNet  Google Scholar 

  33. Kim, J.: Invariant measures for a stochastic nonlinear Schrödinger equation. Indiana Univ. Math. J. 55, 687–717 (2006)

    Article  MathSciNet  Google Scholar 

  34. Kim, J.: On the stochastic Benjamin-Ono equation. J. Differ. Equ. 228, 737–768 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. Brzeźniak, Z., Ondreját, M., Seidler, J.: Invariant measures for stochastic nonlinear beam and wave equations. J. Differ. Equ. 260(5), 4157–4179 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Misiats, O., Stanzhytskyi, O., Yip, N.K.: Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains. J. Theor. Probab. 29(3), 996–1026 (2016)

    Article  MathSciNet  Google Scholar 

  37. Brzeźniak, Z., Motyl, E., Ondrejat, M.: Invariant measure for the stochastic Navier–Stokes equations in unbounded 2D domains. Ann. Probab. 45(5), 3145–3201 (2017)

    Article  MathSciNet  Google Scholar 

  38. Chen, Z., Wang, B.: Invariant measures of fractional stochastic delay reaction-diffusion equations on unbounded domains. Nonlinearity 34(6), 3969–4016 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  39. Chen, L., Dong, Z., Jiang, J., Zhai, J.: On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity. Sci. China Math. 63(8), 1463–1504 (2020)

    Article  MathSciNet  Google Scholar 

  40. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  41. Hu, H., Xu, L.: Existence and uniqueness theorems for periodic Markov process and applications to stochastic functional differential equations. J. Math. Anal. Appl. 466(1), 896–926 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the NNSF of China (11471190,11971260), the SDNSF (ZR2014AM002), and the PSF (2012M511488, 2013T60661, 201202023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yang, D. & Zhong, S. Limiting Dynamics for Stochastic FitzHugh–Nagumo Lattice Systems in Weighted Spaces. J Dyn Diff Equat 36, 321–352 (2024). https://doi.org/10.1007/s10884-022-10145-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10145-2

Keywords

JEL Classification

Navigation