Skip to main content
Log in

Analytical solutions in a cosmic string Born–Infeld-dilaton black hole geometry: quasinormal modes and quantization

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Chargeless massive scalar fields are studied in the spacetime of Born–Infeld dilaton black holes (BIDBHs). We first separate the massive covariant Klein–Gordon equation into radial and angular parts and obtain the exact solution of the radial equation in terms of the confluent Heun functions. Using the obtained radial solution, we show how one gets the exact quasinormal modes for some particular cases. We also solve the Klein–Gordon equation solution in the spacetime of a BIDBHs with a cosmic string in which we point out the effect of the conical deficit on the BIDBHs. The analytical solutions of the radial and angular parts are obtained in terms of the confluent Heun functions. Finally, we study the quantization of the BIDBH. While doing this, we also discuss the Hawking radiation in terms of the effective temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbott, B.P.: LIGO scientific and virgo collaborations. Phys. Rev. Lett. 116(24), 241102 (2016)

    ADS  MathSciNet  Google Scholar 

  2. Vishveshwara, C.V.: Phys. Rev. D 1, 2870 (1970)

    ADS  Google Scholar 

  3. Vishveshwara, C.V.: Nature 227, 936 (1970)

    ADS  Google Scholar 

  4. Chirenti, C.: Braz. J. Phys. 48(1), 102 (2018)

    ADS  Google Scholar 

  5. Blazquez-Salcedo, J.L., Macedo, C.F.B., Cardoso, V., Ferrari, V., Gualtieri, L., Khoo, F.S., Kunz, J., Pani, P.: Phys. Rev. D 94(10), 104024 (2016)

    ADS  Google Scholar 

  6. Cardoso, V., Franzin, E., Pani, P.: Phys. Rev. Lett. 116(17), 171101 (2016)

    ADS  Google Scholar 

  7. Berti, E., Sesana, A., Barausse, E., Cardoso, V., Belczynski, K.: Phys. Rev. Lett. 117(10), 101102 (2016)

    ADS  Google Scholar 

  8. Corda, C.: Class. Quantum Gravity 32(19), 195007 (2015)

    ADS  MathSciNet  Google Scholar 

  9. Gonzalez, P.A., Papantonopoulos, E., Saavedra, J., Vasquez, Y.: Phys. Rev. D 95(6), 064046 (2017)

    ADS  Google Scholar 

  10. Cruz, M., Gonzalez-Espinoza, M., Saavedra, J., Vargas-Arancibia, D.: Eur. Phys. J. C 76(2), 75 (2016)

    ADS  Google Scholar 

  11. Gonzalez, P., Papantonopoulos, E., Saavedra, J.: JHEP 1008, 050 (2010)

    ADS  Google Scholar 

  12. Lepe, S., Saavedra, J.: Phys. Lett. B 617, 174 (2005)

    ADS  MathSciNet  Google Scholar 

  13. Crisostomo, J., Lepe, S., Saavedra, J.: Class. Quantum Gravity 21, 2801 (2004)

    ADS  Google Scholar 

  14. Övgün, A., Jusufi, K.: arXiv:1801.02555 [gr-qc]

  15. Gonzalez, P.A., Övgün, A., Saavedra, J., Vasquez, Y.: arXiv:1711.01865 [gr-qc]

  16. Övgün, A., Sakalli, I., Saavedra, J.: Chin. Phys. C 42, 105102 (2018)

  17. Aros, R., Martinez, C., Troncoso, R., Zanelli, J.: Phys. Rev. D 67, 044014 (2003)

    ADS  MathSciNet  Google Scholar 

  18. Maggiore, M.: Phys. Rev. Lett. 100, 141301 (2008)

    ADS  MathSciNet  Google Scholar 

  19. Wang, B., Abdalla, E., Mann, R.B.: Phys. Rev. D 65, 084006 (2002)

    ADS  MathSciNet  Google Scholar 

  20. Konoplya, R.A.: Phys. Rev. D 68, 024018 (2003)

    ADS  MathSciNet  Google Scholar 

  21. Konoplya, R.A., Zhidenko, A.: Rev. Mod. Phys. 83, 793 (2011)

    ADS  Google Scholar 

  22. Hod, S.: Phys. Rev. Lett. 81, 4293 (1998)

    ADS  MathSciNet  Google Scholar 

  23. Hod, S.: Class. Quantum Gravity 23, L23 (2006)

    ADS  MathSciNet  Google Scholar 

  24. Birkandan, T., Hortacsu, M.: Gen. Relativ. Gravit. 35, 457 (2003)

    ADS  Google Scholar 

  25. Birkandan, T., Hortacsu, M.: EPL 119(2), 20002 (2017)

    ADS  Google Scholar 

  26. Fernando, S.: Gen. Relativ. Gravit. 36, 71 (2004)

    ADS  MathSciNet  Google Scholar 

  27. Fernando, S., Arnold, K.: Gen. Relativ. Gravit. 36, 1805 (2004)

    ADS  Google Scholar 

  28. Morais Graca, J.P., Salako, G.I., Bezerra, V.B.: Int. J. Mod. Phys. D 26(10), 1750113 (2017)

    Google Scholar 

  29. Aharony, O., Berkooz, M., Kutasov, D., Seiberg, N.: JHEP 9810, 004 (1998)

    ADS  Google Scholar 

  30. Sheykhi, A.: Int. J. Mod. Phys. D 18, 25 (2009)

    ADS  Google Scholar 

  31. Andrade, T.: arXiv:1712.00548 [hep-th]

  32. Andrade, T., Casalderrey-Solana, J., Ficnar, A.: JHEP 1702, 016 (2017)

    ADS  Google Scholar 

  33. Kuang, X.M., Papantonopoulos, E.: JHEP 1608, 161 (2016)

    ADS  Google Scholar 

  34. Kovtun, P.K., Starinets, A.O.: Phys. Rev. D 72, 086009 (2005)

    ADS  Google Scholar 

  35. Chen, B., Xu, Z.: JHEP 0911, 091 (2009)

    ADS  Google Scholar 

  36. Berti, E., Yagi, K., Yang, H., Yunes, N.: J. Gen. Relativ. Gravit. Top. Collect. arXiv:1801.03587 [gr-qc] (to be appeared)

  37. Bekenstein, J.D.: Lett. Nuovo Cimento 11, 467 (1974)

    ADS  Google Scholar 

  38. Gibbons, G.W.: Commun. Math. Phys. 44, 245 (1975)

    ADS  Google Scholar 

  39. Bekenstein, J.D.: Phys. Rev. D 9, 3292 (1974)

    ADS  Google Scholar 

  40. Hawking, S.W.: Nature 248, 30 (1974)

    ADS  Google Scholar 

  41. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) Erratum: [Commun. Math. Phys. 46, 206 (1976)]

  42. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    ADS  Google Scholar 

  43. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    ADS  MathSciNet  Google Scholar 

  44. Akhmedov, E.T., Akhmedova, V., Singleton, D.: Phys. Lett. B 642, 124 (2006)

    ADS  MathSciNet  Google Scholar 

  45. Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006)

    ADS  MathSciNet  Google Scholar 

  46. Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: JHEP 0505, 014 (2005)

    ADS  Google Scholar 

  47. Singleton, D., Wilburn, S.: Phys. Rev. Lett. 107, 081102 (2011)

    ADS  Google Scholar 

  48. Kubiznak, D., Mann, R.B.: JHEP 1207, 033 (2012)

    ADS  Google Scholar 

  49. Kubiznak, D., Mann, R.B., Teo, M.: Class. Quantum Gravity 34(6), 063001 (2017)

    ADS  Google Scholar 

  50. Sakalli, I., Ovgun, A.: Eur. Phys. J. Plus 130(6), 110 (2015)

    Google Scholar 

  51. Sakalli, I., Ovgun, A.: EPL 110(1), 10008 (2015)

    ADS  Google Scholar 

  52. Sakalli, I., Halilsoy, M., Pasaoglu, H.: Int. J. Theor. Phys. 50, 3212 (2011)

    Google Scholar 

  53. Övgün, A.: Int. J. Theor. Phys. 55(6), 2919 (2016)

    MathSciNet  Google Scholar 

  54. Sakalli, I., Övgün, A.: Eur. Phys. J. Plus 131(6), 184 (2016)

    Google Scholar 

  55. Sakalli, I., Ovgun, A.: EPL 118(6), 60006 (2017)

    ADS  Google Scholar 

  56. Jusufi, K.: Gen. Relativ. Gravit. 48(8), 105 (2016)

    ADS  MathSciNet  Google Scholar 

  57. Jusufi, K.: Gen. Relativ. Gravit. 47(10), 124 (2015)

    ADS  MathSciNet  Google Scholar 

  58. Kuang, X.M., Saavedra, J., Övgün, A.: Eur. Phys. J. C 77(9), 613 (2017)

    ADS  Google Scholar 

  59. Born, M.: Proc. R. Soc. Lond. A 143(849), 410 (1934)

    ADS  Google Scholar 

  60. Gross, D.J., Sloan, J.H.: Nucl. Phys. B 291, 41 (1987)

    ADS  Google Scholar 

  61. Bergshoeff, E., Sezgin, E., Pope, C.N., Townsend, P.K.: Phys. Lett. B 188, 70 (1987)

    ADS  Google Scholar 

  62. Panotopoulos, G., Rincon, A.: Phys. Rev. D 96, 025009 (2017)

    ADS  Google Scholar 

  63. Yamazaki, R., Ida, D.: Phys. Rev. D 64, 024009 (2001)

    ADS  MathSciNet  Google Scholar 

  64. Sheykhi, A., Riazi, N., Mahzoon, M.H.: Phys. Rev. D 74, 044025 (2006)

    ADS  MathSciNet  Google Scholar 

  65. Vilenkin, A.: Phys. Rept. 121, 263 (1985)

    ADS  Google Scholar 

  66. Vanchurin, V., Olum, K.D., Vilenkin, A.: Phys. Rev. D 74, 063527 (2006)

    ADS  Google Scholar 

  67. Polchinski, J., Rocha, J.V.: Phys. Rev. D 75, 123503 (2007)

    ADS  Google Scholar 

  68. Blanco-Pillado, J.J., Olum, K.D.: Phys. Rev. D 96(10), 104046 (2017)

    ADS  Google Scholar 

  69. Blanco-Pillado, J.J., Olum, K.D., Siemens, X.: Phys. Lett. B 778, 392 (2018)

    ADS  Google Scholar 

  70. Jusufi, K., Övgün, A.: Phys. Rev. D 97, 064030 (2018)

  71. Brown, J.D., York, J.W.: Phys. Rev. D 47, 1407 (1993)

    ADS  MathSciNet  Google Scholar 

  72. Wang, M.-T., Yau, S.-T.: Phys. Rev. Lett. 102, 021101 (2009)

    ADS  Google Scholar 

  73. Clement, G., Fabris, J.C., Marques, G.T.: Phys. Lett. B 65, 54 (2007)

    ADS  Google Scholar 

  74. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago and London (1984)

    MATH  Google Scholar 

  75. Bekenstein, J.D.: Lett. Nuovo Cimento 4, 737 (1972)

    ADS  Google Scholar 

  76. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  Google Scholar 

  77. Ejaz, A., Gohar, H., Lin, H., Saifullah, K., Yau, S.T.: Phys. Lett. B 726, 827 (2013)

    ADS  MathSciNet  Google Scholar 

  78. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  79. Slavyanov, S.Y., Lay, W.: Special Functions: A Unified Theory Based on Singularities. Oxford Mathematical Monographs. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  80. Ronveaux, A.: Heun’s Differential Equations. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  81. Maier, R.S.: The 192 Solutions of Heun Equation (2004) (preprint math CA/0408317)

  82. Fiziev, P.P.: J. Phys. A Math. Theor. 43, 035203 (2010)

    ADS  Google Scholar 

  83. Sakalli, I., Halilsoy, M.: Phys. Rev. D 69, 124012 (2004)

    ADS  MathSciNet  Google Scholar 

  84. Al-Badawi, A., Sakalli, I.: J. Math. Phys. 49, 052501 (2008)

    ADS  MathSciNet  Google Scholar 

  85. Sakalli, I., Al-Badawi, A.: Can. J. Phys. 87, 349 (2009)

    ADS  Google Scholar 

  86. Hortacsu, M.: Adv. High Energy Phys. 2018, 8621573 (2018)

    Google Scholar 

  87. Hortacsu, M.: Heun functions and their uses in physics. In: Camci, U., Semiz, I. (eds.) Proceedings of the 13th Regional Conference on Mathematical Physics, pp. 23–39. World Scientific, Antalya (2010)

    Google Scholar 

  88. Sakalli, I.: Phys. Rev. D 94, 084040 (2016)

    ADS  MathSciNet  Google Scholar 

  89. Jusufi, K., Sakalli, I., Ovgun, A.: Gen. Relativ. Gravit. 50, 10 (2018)

    ADS  Google Scholar 

  90. López-Ortega, A.: Int. J. Mod. Phys. D 18, 1441 (2009)

    ADS  Google Scholar 

  91. López-Ortega, A., Vega-Acevedo, I.: Gen. Relativ. Gravit. 43, 2631 (2011)

    ADS  Google Scholar 

  92. Azreg-Ainou, M.: Class. Quantum Gravity 16, 245 (1999)

    ADS  MathSciNet  Google Scholar 

  93. Becar, R., Lepe, S., Saavedra, J.: Phys. Rev. D 75, 084021 (2007)

    ADS  MathSciNet  Google Scholar 

  94. Destounis, K., Panotopoulos, G., Rincon, A.: Eur. Phys. J. C 78, 139 (2018)

    ADS  Google Scholar 

  95. Motl, E., Neitzke, A.: Adv. Theor. Math. Phys. 7, 307 (2003)

    MathSciNet  Google Scholar 

  96. Casals, M., Ottewill, A.C.: Phys. Rev. D 97(2), 024048 (2018)

    ADS  Google Scholar 

  97. Berti, E., Cardoso, V., Kokkotas, K.D., Onozawa, H.: Phys. Rev. D 68, 124018 (2003)

    ADS  MathSciNet  Google Scholar 

  98. Buggle, C., Leonard, J., von Klitzing, W., Walraven, J.T.M.: Phys. Rev. Lett. 93, 173202 (2004)

    ADS  Google Scholar 

  99. Vieira, H.S., Bezerra, V.B., Costa, A.A.: EPL 109(6), 60006 (2015)

    ADS  Google Scholar 

  100. De A. Marques, G., Bezerra, V.B.: Some quantum effects in the spacetimes of topological defects. The Tenth Marcel Grossmann Meeting (in 3 volumes). In: Novello, M., Perez Bergliaffa, S., Ruffini, R., (eds.) Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF), pp. 2199–2201, Rio de Janeiro, Brazil, 20–26 July 2003. World Scientific Publishing, Singapore. ISBN 981-256-667-8 (set), ISBN 981-256-980-4 (Part A), ISBN 981-256-979-0 (Part B), ISBN 981-256-978-2 (Part C) (2006)

  101. Hackmann, E., Hartmann, B., Lämmerzahl, C., Sirimachan, P.: Phys. Rev. D 81, 064016 (2010)

    ADS  MathSciNet  Google Scholar 

  102. Hackmann, E., Hartmann, B., Lämmerzahl, C., Sirimachan, P.: Phys. Rev. D 82, 044024 (2010)

    ADS  Google Scholar 

  103. Vieira, H.S.: Chin. Phys. C 41(4), 043105 (2017)

    ADS  MathSciNet  Google Scholar 

  104. Dong, R., Kinney, W.H., Stojkovic, D.: JCAP 1610(10), 034 (2016)

    ADS  Google Scholar 

  105. Hod, S.: Phys. Rev. D 75, 064013 (2007)

    ADS  MathSciNet  Google Scholar 

  106. Cuyubamba, M.A., Konoplya, R.A., Zhidenko, A.: Phys. Rev. D 93(10), 104053 (2016)

    ADS  MathSciNet  Google Scholar 

  107. Corda, C.: JHEP 1108, 101 (2011)

    ADS  Google Scholar 

  108. Corda, C.: Int. J. Mod. Phys. D 21, 1242023 (2012)

    ADS  MathSciNet  Google Scholar 

  109. Corda, C.: Adv. High Energy Phys. 2015, 867601 (2015)

    MathSciNet  Google Scholar 

  110. Chirenti, C., Saa, A., Skakala, J.: Phys. Rev. D 87(4), 044034 (2013)

    ADS  Google Scholar 

  111. Decarreau, A., Dumont-Lepage, M.C., Maroni, P., Robert, A., Ronveaux, A.: Formes Canoniques de Equations confluentes de l’equation de Heun. Ann. Soc. Sci. Brux. T92(I–II), 53 (1978)

    MATH  Google Scholar 

  112. See \(Maple^{{\rm TM}}\) (2018) (maplesoft.com)

  113. Decarreau, A., Maroni, P., Robert, A.: Ann. Soc. Sci. Brux. T92(III), 151 (1978)

    Google Scholar 

  114. Fiziev, P.P.: Classes of Exact Solutions to Regge–Wheeler and Teukolsky Equations. arXiv:0902.1277 (2009)

Download references

Acknowledgements

We wish to thank the Editor and anonymous Referee for their valuable comments and suggestions. I. S. is grateful to Dr. Edgardo Cheb-Terrab (Waterloo-Canada) for his valuable comments on the confluent Heun functions. A. Ö. acknowledges financial support provided under the Chilean FONDECYT Grant No. 3170035. A. Ö. is grateful to Prof. Robert Mann for hosting him as a research visitor at Waterloo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İzzet Sakallı.

Appendix

Appendix

The confluent Heun equations is obtained from the general Heun equation [80, 111, 112] through a confluence process, that is, a process where two singularities coalesce, performed by redefining parameters and taking limits, resulting in a single (typically irregular) singularity. The confluent Heun equation is given by

$$\begin{aligned} {\frac{d^{2}U\left( y\right) }{d{y}^{2}}}+\left( {\widetilde{a}}+\frac{1+ {\widetilde{b}}}{y}-\frac{1+{\widetilde{c}}}{1-y}\right) {\frac{dU\left( y\right) }{dy}}+\left( \frac{{\widetilde{m}}}{y}-\frac{{\widetilde{n}}}{1-y} \right) U\left( y\right) =0. \end{aligned}$$
(A1)

and thus (A1) has three singular points: two regular ones: \(y=0\) and \( y=1\), and one irregular one: \(y=\infty \). Solution of (A1) is called the confluent Heun’s function: \(U\left( y\right) =\text{ HeunC }({\widetilde{a}} ,{\widetilde{b}},{\widetilde{c}},{\widetilde{d}},{\widetilde{e}};y)\), which is regular around the regular singular point \(y=0\). It is defined as

$$\begin{aligned} \text{ HeunC }({\widetilde{a}},{\widetilde{b}},{\widetilde{c}},{\widetilde{d}}, {\widetilde{e}};y)=\sum _{n=0}^{\infty }u_{n}({\widetilde{a}},{\widetilde{b}}, {\widetilde{c}},{\widetilde{d}},{\widetilde{e}})y^{n}, \end{aligned}$$
(A2)

which is the convergent in the disk \(|y|<1\) and satisfies the normalization \( \text{ HeunC }({\widetilde{a}},{\widetilde{b}},{\widetilde{c}},{\widetilde{d}}, {\widetilde{e}};0)=1\). The parameters \({\widetilde{a}},{\widetilde{b}},\widetilde{c },{\widetilde{d}},{\widetilde{e}}\) are related with \({\widetilde{m}}\) and \( {\widetilde{n}}\) as follows

$$\begin{aligned} {\widetilde{m}}= & {} \frac{1}{2}({\widetilde{a}}-{\widetilde{b}}-{\widetilde{c}}+ {\widetilde{a}}{\widetilde{b}}-{\widetilde{b}}{\widetilde{c}})-{\widetilde{e}}, \end{aligned}$$
(A3)
$$\begin{aligned} {\widetilde{n}}= & {} \frac{1}{2}({\widetilde{a}}+{\widetilde{b}}+{\widetilde{c}}+ {\widetilde{a}}{\widetilde{c}}+{\widetilde{b}}{\widetilde{c}})+{\widetilde{d}}+ {\widetilde{e}}. \end{aligned}$$
(A4)

The coefficients \(u_{n}({\widetilde{a}},{\widetilde{b}},{\widetilde{c}},\widetilde{ d},{\widetilde{e}})\) are determined by three-term recurrence relation:

$$\begin{aligned} A_{n}u_{n}=B_{n}u_{n-1}+C_{n}u_{n-2}, \end{aligned}$$
(A5)

with initial conditions {\(u_{-1}=0\,\),\(\,u_{0}=1\)} and we have

$$\begin{aligned} A_{n}= & {} 1+{\frac{{\widetilde{b}}}{n}}\,\rightarrow 1,\,\,\,\text { as}\,\,\,n\rightarrow \infty , \nonumber \\ B_{n}= & {} 1+{\frac{-{\widetilde{a}}+{\widetilde{b}}+{\widetilde{c}}-1}{n }}+{\frac{{\widetilde{e}}+({\widetilde{a}}-{\widetilde{b}}-{\widetilde{c}})/2+ {\widetilde{b}}/2\left( {\widetilde{c}}-{\widetilde{a}}\right) }{n^{2}}} \,\rightarrow 1,\,\,\,\text {as}\,\,\,n\rightarrow \infty , \nonumber \\ C_{n}= & {} {\frac{{\widetilde{a}}}{n^{2}}}\left( {\frac{{\widetilde{d}} }{{\widetilde{a}}}}+{\frac{{\widetilde{b}}+{\widetilde{c}}}{2}}+n-1\right) \,\rightarrow 0,\,\,\,\text {as}\,\,\,n\rightarrow \infty . \end{aligned}$$
(A6)

\(\text{ HeunC }({\widetilde{a}},{\widetilde{b}},{\widetilde{c}},{\widetilde{d}}, {\widetilde{e}};y)\) reduces to a polynomial of degree \(N\left( =0,1,2,\ldots \right) \) with respect to the variable y if and only if the following two conditions are satisfied [82]:

$$\begin{aligned} {\frac{{\widetilde{d}}}{{\widetilde{a}}}}+{\frac{{\widetilde{b}}+{\widetilde{c}}}{2}} +N+1= & {} 0, \end{aligned}$$
(A7)
$$\begin{aligned} \Delta _{N+1}({\widetilde{m}})= & {} 0. \end{aligned}$$
(A8)

(A7) is known as “\(\delta _{N}\)-condition” and (A8) is called “\( \Delta _{N+1}\)-condition”. In fact, the \(\delta _{N}\)-condition is nothing but \(C_{N+2}=0\) and the \(\Delta _{N+1}\)-condition corresponds to \(u_{N+1}( {\widetilde{a}},{\widetilde{b}},{\widetilde{c}},{\widetilde{d}},{\widetilde{e}})=0\).

Since the confluent Heun equation thus has two regular singularities and one irregular singularity, it includes the \(_{2}F_{1}\) hypergeometric equation [78]:

$$\begin{aligned} \left( -z+{z}^{2}\right) {\frac{d^{2}}{d{z}^{2}}}Y\left( z\right) +\left[ \left( 1+{\widehat{a}}+{\widehat{b}}\right) z-{\widehat{c}}\right] {\frac{d}{dz}} Y\left( z\right) +{\widehat{a}}{\widehat{b}}Y\left( z\right) =0 \end{aligned}$$
(A9)

which can be expressed in terms of \(\text{ HeunC }\) functions as follows [112]

$$\begin{aligned} Y\left( z\right)= & {} C _{ 1 }\,\left( 1-z\right) ^{-{\widehat{a}}} \text{ HeunC }\left( 0,{\widehat{a}}-{\widehat{b}},{\widehat{c}}-1,0,\frac{1}{2}\, \left[ \left( {\widehat{c}}-2\,{\widehat{a}}\right) {\widehat{b}}\right. \right. \nonumber \\&\quad \left. \left. -\,{\widehat{c}} \left( 1-{\widehat{a}}\right) +1\right] ,\left( 1-z\right) ^{-1}\right) \nonumber \\&\quad +\, C _{ 2 }\,\left( 1-z\right) ^{-{\widehat{b}}}\text{ HeunC }\left( 0,{\widehat{b}}-{\widehat{a}},{\widehat{c}}-1,0,\frac{1}{2}\,\left[ \left( {\widehat{c}}-2\,{\widehat{a}}\right) {\widehat{b}}\right. \right. \nonumber \\&\quad \left. \left. -\,{\widehat{c}}\left( 1-\widehat{ a}\right) +1\right] ,\left( 1-z\right) ^{-1}\right) \end{aligned}$$
(A10)

In fact, the \(_{2}F_{1}\) hypergeometric function is related to \(\text{ HeunC }\) function by [112]

$$\begin{aligned} \begin{aligned} _{2}F_{1}({\widehat{a}},{\widehat{b}};\,{\widehat{c}};\,z)&=\left( 1-z\right) ^{- {\widehat{b}}}\text{ HeunC }\left( 0,{\widehat{c}}-1,{\widehat{b}}-{\widehat{a}},0, \frac{1}{2}\,\left( -1+{\widehat{a}}+{\widehat{b}}\right) {\widehat{c}}\right. \\&\qquad \left. -\,{\widehat{a}} {\widehat{b}}+\frac{1}{2},{\frac{-z}{1-z}}\right) , \\ \,\,\,\text {where}\,\,\,z&\ne 1. \end{aligned} \end{aligned}$$
(A11)

Inversely, \(\text{ HeunC }\) function can be rewritten in terms of the \( _{2}F_{1}\) hypergeometric function as follows [112,113,114]

$$\begin{aligned} \text{ HeunC }\left( 0,{\widehat{b}},{\widehat{c}},0,{\widehat{e}},z\right)= & {} \left( 1-z\right) ^{-\frac{1}{2}\left( 1+{\widehat{b}}+{\widehat{c}}+\sqrt{1+ \widehat{{b}}^{2}+\widehat{{c}}^{2}-4{\widehat{e}}}\right) }\nonumber \\&\times {_{2}F_{1}}\left[ \frac{1}{2}\left( 1+{\widehat{b}}+{\widehat{c}}+\sqrt{1+ {\widehat{b}}^{2}+{\widehat{c}}^{2}-4{\widehat{e}}}\right) \right. ,\, \nonumber \\&\left. \frac{1}{2}\left( 1+{\widehat{b}}-{\widehat{c}}+\sqrt{1+{\widehat{b}}^{2}+ {\widehat{c}}^{2}-4{\widehat{e}}}\right) ;\,1+{\widehat{b}};\,{\frac{z}{-1+z}} \right] , \nonumber \\ \,\,\,\text {where}\,\,\, 1+{\widehat{b}}\ne & {} 0\,\,\,\text {and}\,\,\,z\ne 1. \end{aligned}$$
(A12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakallı, İ., Jusufi, K. & Övgün, A. Analytical solutions in a cosmic string Born–Infeld-dilaton black hole geometry: quasinormal modes and quantization. Gen Relativ Gravit 50, 125 (2018). https://doi.org/10.1007/s10714-018-2455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2455-4

Keywords

Navigation