Skip to main content
Log in

Distortion of the Poisson Bracket by the Noncommutative Planck Constants

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we introduce a kind of “noncommutative neighbourhood” of a semiclassical parameter corresponding to the Planck constant. This construction is defined as a certain filtered and graded algebra with an infinite number of generators indexed by planar binary leaf-labelled trees. The associated graded algebra (the classical shadow) is interpreted as a “distortion” of the algebra of classical observables of a physical system. It is proven that there exists a q-analogue of the Weyl quantization, where q is a matrix of formal variables, which induces a nontrivial noncommutative analogue of a Poisson bracket on the classical shadow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev A., Kosmann-Schwarzbach Y.: Manin pairs and moment maps. J. Diff. Geom. 56(1), 133–165 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Alekseev A., Kosmann-Schwarzbach Y., Meinrenken E.: Quasi-Poisson manifolds. Canad. J. Math. 54(1), 3–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beggs E. J., Majid S.: Semiclassical differential structures. Pacific J. Math. 224(1), 1–44 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Van den Bergh M.: Double Poisson algebras. Trans. Amer. Math. Soc. 360(11), 5711–5769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bocklandt R., Le Bruyn L.: Necklace Lie algebras and noncommutative symplectic geometry. Math. Z. 240(1), 141–167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro C.: On modified Weyl-Heisenberg algebras, noncommutativity, matrix-valued Planck constant and QM in Clifford spaces. J. Phys. A 39(45), 14205–14229 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Chaichian M., Demichev A.P., Kulish P.P.: Quasi-classical limit in q-deformed systems, non-commutativity and the q-path integral. Phys. Lett. A 233(4–6), 251–260 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Connes, A.: Cyclic cohomology and noncommutative differential geometry. Proceedings of the International Congress of Mathematicians, Vol. 1, (Berkeley, Calif., 1986), Providence, RI: Amer. Math. Soc., 1987, pp. 879–889

  9. Crawley-Boevey W., Etingof P., Ginzburg V.: Noncommutative geometry and quiver algebras. Adv. Math. 209(1), 274–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drinfel’d, V.G.: Quasi-Hopf algebras. (Russian) Algebra i Analiz 1(6), 114–148 (1989), translation in Leningrad Math. J. 1(6), 1419–1457 (1990)

  11. Farkas D.R.: A ring-theorist’s description of Fedosov quantization. Lett. Math. Phys. 51(3), 161–177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fialowski A., Penkava M.: Deformation theory of infinity algebras. J. Algebra 255(1), 59–88 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ginzburg V.: Non-commutative symplectic geometry, quiver varieties, and operads. Math. Res. Lett. 8(3), 377–400 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Gurevich, D.I.: Algebraic aspects of the quantum Yang-Baxter equation. (Russian) Algebra i Analiz 2(4), 119–148 (1990), translation in Leningrad Math. J. 2(4), 801–828 (1991)

  15. Gurevich, D.I., Pyatov, P.N., Saponov, P.A.: Representation theory of an algebra of a (modified) reflection equation of GL(m|n) type. (Russian) Algebra i Analiz 20(2), 70–133 (2008), translation in St. Petersburg Math. J. 20(2), 213–253 (2009)

  16. Hartwig J.T., Larsson D., Silvestrov S.D.: Deformations of Lie algebras using σ-derivations. J. Algebra 295(2), 314–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirshfeld A.C., Henselder P.: Star products and quantum groups in quantum mechanics and field theory. Ann. Physics 308(1), 311–328 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kapranov M.: Noncommutative geometry based on commutator expansions. J. Reine Angew. Math. 505, 73–118 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karasev, M.V., Maslov, V.P.: Nonlinear Poisson brackets. Geometry and quantization. Translated from the Russian by A. Sossinsky and M. Shishkova. Translations of Mathematical Monographs, 119. Providence, RI: Amer. Math. Soc., 1993

  20. Kontsevich M.: Deformation quantization of Poisson manifolds, I. Lett. Math. Phys. 66, 157–216 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Kontsevich, M.: Formal (non)commutative symplectic geometry. The Gel’fand Mathematical Seminars, 1990–1992, Boston, MA: Birkhuser Boston, 1993, pp. 173–187

  22. Kubo F.: Finite-dimensional non-commutative Poisson algebras. J. Pure Appl. Algebra 113(3), 307–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le Bruyn, L.: Noncommutative geometry and Cayley-smooth orders. In: Pure and Applied Mathematics (Boca Raton), 290. Boca Raton, FL: Chapman & Hall/CRC, 2008

  24. López Peña J., Panaite F., Van Oystaeyen F.: General twisting of algebras. Adv. Math. 212(1), 315–337 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maslov V.P.: An application of the method of ordered operators to the problem of obtaining exact solutions. (Russian) Teoret. Mat. Fiz. 33(2), 185–209 (1977)

    MATH  Google Scholar 

  26. Maslov, V.P.: Operational methods. Translated from the Russian by V. Golo, N. Kulman, G. Voropaeva. Moscow: Mir Publishers, 1976

  27. Maslov, V.P.: Nonstandard characteristics in asymptotic problems. (Russian) Usp. Mat. Nauk 38(6) (234), 3–36 (1983)

  28. Newmann M.H.A.: On theories with a combinatorial definition of “equivalence”. Ann. of Math. 43, 223–243 (1942)

    Article  MathSciNet  Google Scholar 

  29. Van Oystaeyen, F., Verschoren, A.: Noncommutative algebraic geometry. An introduction. Lecture Notes in Mathematics, 887. Berlin: Springer-Verlag, 1981

  30. Panaite F., Van Oystaeyen F.: Quasi-Hopf algebras and representations of octonions and other quasialgebras. J. Math. Phys. 45(10), 3912–3929 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Penkava, M.: L-infinity algebras and their cohomology. http://arxiv.org/abs/q-alg/9512014v1 , 1995

  32. Pichereau A., Van de Weyer G.: Double Poisson cohomology of path algebras of quivers. J. Algebra 319(5), 2166–2208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Richard L., Silvestrov S.D.: Quasi-Lie structure of σ-derivations of \({\mathbb{C}[t^{\pm 1}]}\) . J. Alg. 319(3), 1285–1304 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu P.: Noncommutative Poisson algebras. Amer. J. Math. 116(1), 101–125 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yao Y., Ye Y., Zhang P.: Quiver Poisson algebras. J. Algebra 312(2), 570–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur E. Ruuge.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruuge, A.E., Van Oystaeyen, F. Distortion of the Poisson Bracket by the Noncommutative Planck Constants. Commun. Math. Phys. 304, 369–393 (2011). https://doi.org/10.1007/s00220-011-1230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1230-0

Keywords

Navigation