Skip to main content
Log in

On the Cauchy problem of Boltzmann equation with a very soft potential

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This work proves the global existence to Boltzmann equation in the whole space with very soft potential \(\gamma \in [0,d)\) and angular cutoff, in the framework of small perturbation of equilibrium state. In this article, we generalize the estimate on linearized collision operator L to the case of very soft potential and obtain the spectrum structure of the linearized Boltzmann operator correspondingly. The global classic solution can be derived by the method of strongly continuous semigroup. For soft potential, the linearized Boltzmann operator could not give spectral gap; hence, we have to consider a weighted velocity space in order to obtain algebraic decay in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russel E. Caflisch. The Boltzmann equation with a soft potential. I. Linear, Spatiallyhomogeneous. Comm. Math. Phys., 74(1):71–95, feb 1980.

  2. Russel E. Caflisch. The Boltzmann equation with a soft potential. II. Nonlinear, spatiallyperiodic. Comm. Math. Phys., 74(2):97–109, jun 1980.

  3. Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti. The Mathematical Theory of Dilute Gases, volume 106 of Applied Mathematical Sciences. Springer Science+Business Media New York, 1994.

  4. Richard S. Ellis and Mark A. Pinsky. The First and Second Fluid Approximations to the Linearized Boltzmann Equation. J. Math. Pures Appl., 54:125–156, 1975.

    MathSciNet  MATH  Google Scholar 

  5. Klaus-Jochen Engel, Rainer Nagel, Rainer Nagel, M. Campiti, and T. Hahn. One-Parameter Semigroups for Linear Evolution Equations. Springer New York, 1999.

  6. Lawrence C. Evans. Partial Differential Equations: Second Edition. Graduate Studies in Mathematics. American Mathematical Society, 2010.

  7. Israel Gohberg, Seymor Goldberg, and Marinus Kaashoek. Classes of Linear Operators Vol. I (Operator Theory: Advances and Applications) (v. 1). Birkhäuser, 1990.

  8. H. Grad. Asymptotic theory of the Boltzmann equation. II, in: Rarefied Gas Dynamics, chapter vol. I, page pp. 26-59. (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), 1963.

  9. Yan Guo. Classical Solutions to the Boltzmann Equation for Molecules with an Angular Cutoff. Arch. Ration. Mech. Anal., 169(4):305–353, sep 2003.

  10. Yan Guo. Decay and Continuity of the Boltzmann Equation in Bounded Domains. Arch. Ration. Mech. Anal., 197(3):713–809, dec 2009.

    Article  MathSciNet  Google Scholar 

  11. Yan Guo, Feimin Huang, and Yong Wang. Hilbert Expansion of the Boltzmann Equation with Specular Boundary Condition in Half-Space. Arch. Ration. Mech. Anal., 241(1):231–309, apr 2021.

    Article  MathSciNet  Google Scholar 

  12. Yan Guo, Chanwoo Kim, Daniela Tonon, and Ariane Trescases. Regularity of the Boltzmann equation in convex domains. Invent. Math., 207(1):115–290, jul 2016.

    Article  MathSciNet  Google Scholar 

  13. Hailiang Li, Yi Wang, Tong Yang, and Mingying Zhong. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov–Poisson–Boltzmann System. Arch. Ration. Mech. Anal., 228(1):39–127, oct 2017.

    Article  MathSciNet  Google Scholar 

  14. Tai-Ping Liu and Shih-Hsien Y. Solving Boltzmann equation I, Green function. Bulletin of the Institute of Mathematics Academia Sinica(New Series), pages 115–243, 2011.

  15. Tai-Ping Liu, Tong Yang, Shih-Hsien Yu, and Hui-Jiang Zhao. Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation. Arch. Ration. Mech. Anal., 181(2):333–371, jan 2006.

    Article  MathSciNet  Google Scholar 

  16. Tai-Ping Liu and Shih-Hsien Yu. Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles. Comm. Math. Phys., 246(1):133–179, mar 2004.

    Article  MathSciNet  Google Scholar 

  17. Tai-Ping Liu and Shih-Hsien Yu. Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation. Comm. Pure Appl. Math., 60(3):295–356, 2006.

    Article  MathSciNet  Google Scholar 

  18. Tai-Ping Liu and Shih-Hsien Yu. Invariant Manifolds for Steady Boltzmann Flows and Applications. Arch. Ration. Mech. Anal., 209(3):869–997, may 2013.

    Article  MathSciNet  Google Scholar 

  19. R. T. Seeley. Extension of \(C^\infty \) functions defined in a half space. Proc. Amer. Math. Soc., pages 625–625, 1964.

  20. Robert M. Strain and Yan Guo. Exponential Decay for Soft Potentials near Maxwellian. Arch. Ration. Mech. Anal., 187(2):287–339, dec 2007.

    Article  MathSciNet  Google Scholar 

  21. Seiji Ukai and Kiyoshi Asano. On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. Res. Inst. Math. Sci., 18(2):477–519, 1982.

    Article  MathSciNet  Google Scholar 

  22. Seiji Ukai and Tong Yang. Mathematical Theory of Boltzmann Equation. Lecture Notes.

  23. Tong Yang and Hongjun Yu. Spectrum Analysis of Some Kinetic Equations. Arch. Ration. Mech. Anal., 222(2):731–768, may 2016.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Semigroup theory

Here, we give some useful semigroup theory, one may refer to [5, 7] for more details.

Definition A.1

Let (AD(A)) be a linear unbounded densely defined operator from Hilbert space \(H_1\) into Hilbert space \(H_2\) with domain D(A). Define

$$\begin{aligned} D(A^*) = \Big \{y\in H_2\big | \sup _{0\ne x \in D(A)}\frac{\langle Ax,y\rangle }{\Vert x\Vert } \Big \}. \end{aligned}$$

Take \(y\in D(A^*)\), since \(\overline{D(A)}=H_1\), the functional \(F_y(x):=\langle Ax,y\rangle \) has a unique bounded extension on \(H_1\). Hence, Riesz representation theorem ensures the existence of a unique \(z\in H_1\) such that \(F_y(x) = \langle x,z\rangle \). Define \(A^*y:=z\), then

$$\begin{aligned} \langle Ax,y\rangle = \langle x,A^*y\rangle . \end{aligned}$$

The operator \(A^*(H_2\rightarrow H_1)\) is linear and is called the adjoint of A.

Theorem A.2

Let \(A(X\rightarrow X)\) be the generator of the strongly continuous semigroup \(T(\cdot )\). Suppose that \(f: [0,\infty ) \rightarrow X\) is continuously differentiable on \([0,\infty )\). Then, for each \(x\in D(A)\), there exists a unique solution to

$$\begin{aligned}\left\{ \begin{aligned} u'(t)&= Au(t) + f(t),\quad 0<t<\infty ,\\ u(0)&= x. \end{aligned}\right. \end{aligned}$$

This solution is continuously differentiable and is given by

$$\begin{aligned} u(t) = T(t)x + \int ^t_0T(t-s)f(s)ds,\quad t > 0. \end{aligned}$$

Theorem A.3

Let (AD(A)) be a densely defined linear operator on a Banach space X. If both A and its adjoint \(A^*\) are dissipative, then the closure \(\overline{A}\) of A generates a contraction semigroup on X.

Theorem A.4

Let (AD(A)) be the generator of a strongly continuous semigroup \((T(t))_{t\ge 0}\) on a Banach space X satisfying \(\Vert T(t)\Vert \le Me^{\omega t}\) for all \(t \ge 0\) and some \(\omega \in \mathbb {R}\), \(M\ge 1\). If \(B\in \mathscr {L}(X)\), then \(C := A + B\) with \(D(C) := D(A)\) generates a strongly continuous semigroup \((S(t))_{t\ge 0}\) satisfying \(\Vert S(t)\Vert \le Me^{(\omega +M\Vert B\Vert )t}\) and

$$\begin{aligned} S(t)x = T(t)x + \int ^t_0T(t-s)BS(s)x\,ds, \end{aligned}$$

for all \(t \ge 0\), \(x\in X\).

Hilbert–Schmidt operator

Let \(H_1\) be a separable Hilbert space, \(H_2\) be a Hilbert space.

Definition B.1

\(T\in \mathscr {L}(H_1,H_2)\) is called a Hilbert–Schmidt operator if there exists an orthonormal basis \(\{e_n\}^\infty _{n=1}\) of \(H_1\) such that \( \sum ^\infty _{n=1}\Vert Te_n\Vert ^2_{H_2}<\infty \).

Theorem B.2

If \(T\in \mathscr {L}(H_1,H_2)\) is a Hilbert–Schmidt operator, then T is compact.

Proof

Let \(\{e_n\}^\infty _{n=0}\) be an orthonormal basis of \(H_1\) such that \(\sum ^\infty _{n=1}\Vert Te_n\Vert ^2_{H_2}<\infty \). Then, for \(x\in H_1\),

$$\begin{aligned} Tx = \sum ^\infty _{n=0}(x,e_n)Te_n, \end{aligned}$$

since the right-hand side is absolutely convergent. Define \(T_n:H_1\rightarrow H_2\) by \( T_n(x) = \sum ^n_{k=1}(x,e_k)Te_k\). Then, \(T_n\) has finite rank and hence is compact.

On the other hand, for \(x\in H_1\) such that \(\Vert x\Vert _{H_1}\le 1\), we have

$$\begin{aligned} \Vert Tx-T_nx\Vert ^2_{H_2}&\le \Vert \sum ^\infty _{k=n+1}(x,e_k)Te_k\Vert ^2_{H_2} \le \Vert x\Vert _{H_1}^2\cdot \sum ^\infty _{k=n+1}\Vert Te_k\Vert ^2_{H_2},\\&\Vert T-T_n\Vert \le \left( \sum ^\infty _{k=n+1}\Vert Te_k\Vert ^2_{H_2}\right) ^\frac{1}{2}\rightarrow 0, \end{aligned}$$

as \(n\rightarrow \infty \). Thus, T is compact since it is the limit of a sequence of compact operators.

Theorem B.3

Suppose \(L^2(X,\mu )\) and \(L^2(Y,\lambda )\) are two separable Hilbert space. If \(k\in L^2(X\times Y,\mu \otimes \lambda )\), then

$$\begin{aligned} Kf := \int _Y k(x,y)f(y)\,d\lambda (y) : L^2(Y,\lambda )\rightarrow L^2(X,\mu ) \end{aligned}$$

is a Hilbert–Schmidt operator.

Proof

Let \(\{e_n\}^\infty _{n=0}\) be an orthonormal basis of \(L^2(Y,\lambda )\), then so is \(\{\overline{e_n}\}^\infty _{n=0}\). Since \(k\in L^2(X\times Y,\mu \otimes \lambda )\), we have \(k(x,\cdot )\in L^2(Y,\lambda )\), for almost all \(x\in X\). Thus, \(Ke_n\) is well defined for almost all \(x\in X\) and

$$\begin{aligned}&Ke_n(x) = \int _Y k(x,y)e_n(y)\,d\lambda (y)\\&\sum ^\infty _{n=0} \Vert Ke_n\Vert ^2_{L^2(X,\mu )} =\int _X\sum ^\infty _{n=0}\left| (k(x,\cdot ),\overline{e_n})_{L^2(Y)}\right| ^2\,d\mu (x) =\Vert k\Vert ^2_{L^2(X\times Y)}<\infty . \end{aligned}$$

Interpolation

Define \(\Vert f\Vert _{L^p_\beta } = \Vert (1+|\xi |)^\beta f\Vert _{L^p({\mathbb {R}^d})}\), \(p\in [1,\infty ]\).

Theorem C.1

Let \(\beta \in \mathbb {R}\), \(\gamma \in \mathbb {R}\setminus \{0\}\), \(p\in [1,\infty ]\). Suppose T is a linear operator defined on \(L^p_{\beta +n\cdot \gamma }\) such that

$$\begin{aligned} \Vert Tf\Vert _{L^p_\beta } \le A_n\Vert f\Vert _{L^p_{\beta +n\cdot \gamma }}, \end{aligned}$$

for some constants \(A_n>0\), for all \(n\in \{0,1,2,\dots \}\). Let \(\theta \in (0,1)\), \(n,m\in \{0,1,2,\dots \}\), pick \(\alpha =n\cdot \theta +m\cdot (1-\theta )\). Then, T is bounded linear operator from \(L^p_{\beta +\alpha \cdot \gamma }\) to \(L^p_\beta \), with

$$\begin{aligned} \Vert Tf\Vert _{L^p_\beta } \le A^\theta _nA^{1-\theta }_m\Vert f\Vert _{L^p_{\beta +\alpha \cdot \gamma }}. \end{aligned}$$

To prove this theorem, we will need the Hadamard three-lines theorem.

Theorem C.2

Let F be an analytic function in the open strip \(S=\{z\in \mathbb {C}:0<\text {Re}\lambda <1\}\). Suppose F is continuous and bounded on \(\overline{S}\) with

$$\begin{aligned} |F(z)|\le \left\{ \begin{aligned} A_0, \text { if }\text {Re}\lambda =0,\\ A_1, \text { if }\text {Re}\lambda =1. \end{aligned}\right. \end{aligned}$$

for some positive constants \(A_0,A_1\). Then, for any \(\theta \in [0,1]\), if \(\text {Re}z=\theta \), we have

$$\begin{aligned} |F(z)|\le A_0^{1-\theta }A_1^\theta . \end{aligned}$$

Proof of Theorem C.1

  1. 1.

    With loss of generality, assume \(m>n\). Fix \(\theta \in (0,1)\) and let

    $$\begin{aligned} \alpha = n\cdot \theta +m\cdot (1-\theta ). \end{aligned}$$

    Notice T is well defined on \(L^p_{\beta +\alpha \gamma }\), since \(L^p_{\beta +\alpha \gamma }\subset L^p_{\beta +m\gamma }\).

  2. 2.

    Let \(f(\xi )=\sum ^K_{k=1}a_ke^{i\alpha _k}\chi _{A_k}(\xi )\) be any simple complex function on \({\mathbb {R}^d}\), with \(a_k>0\), \(\alpha _k\in \mathbb {R}\), \(\{A_k\}\) are pairwise disjoint bounded measurable subsets of \({\mathbb {R}^d}\). We would like to control

    $$\begin{aligned} \Vert Tf\Vert _{L^p_\beta } = \sup _{\Vert g\Vert _{L^{p'}}\le 1, g\text { is simple}} \left| \int _{\mathbb {R}^d}Tf(\xi )g(\xi )(1+|\xi |)^\beta \,\mathrm{d}\xi \right| . \end{aligned}$$

    Write \(g=\sum ^J_{j=1}b_je^{i\beta _j}\chi _{B_j}(\xi )\), with \(b_j>0\), \(\beta _j\in \mathbb {R}\), \(\{B_j\}\) are pairwise disjoint bounded measurable subsets of \({\mathbb {R}^d}\). Suppose \(z\in \{z\in \mathbb {C}:0\le \text {Re}z\le 1\}\). Define

    $$\begin{aligned} f_z(\xi ):=\sum ^K_{k=1}a_ke^{i\alpha _k}\chi _{A_k}(\xi )\cdot (1+|\xi |)^{(\alpha -nz-m(1-z))\gamma }. \end{aligned}$$

    Then, \(f_\theta (\xi ) = f(\xi )\), \(f_0(\xi ) = f(\xi )(1+|\xi |)^{(\alpha -m)\gamma }\), \(f_1(\xi ) = f(\xi )(1+|\xi |)^{(\alpha -n)\gamma }\). Define

    $$\begin{aligned} F(z) :&= \int _{\mathbb {R}^d}T(f_z)g(\xi )(1+|\xi |)^\beta \,\mathrm{d}\xi \\&=\sum ^K_{k=1}\sum ^J_{j=1}a_kb_je^{i\alpha _k}e^{i\beta _j} \int _{\mathbb {R}^d}T(\chi _{A_k}(\xi )(1+|\xi |)^{(\alpha -nz-m(1-z))\gamma })\chi _{B_j}(\xi )(1+|\xi |)^\beta \,\mathrm{d}\xi . \end{aligned}$$

    Now, we need to check F satisfies the assumptions in three-lines Theorem C.2.

(i). Claim: F(z) is continuous and bounded in \(\{0\le \text {Re}z\le 1\}\).

Indeed,

$$\begin{aligned} |F(z)|&\le \sum ^K_{k=1}\sum ^J_{j=1}a_kb_j\Vert T(\chi _{A_k}(1+|\cdot |)^{(\alpha -nz-m(1-z))\gamma })\Vert _{L^p_\beta }\Vert \chi _{B_j}(\xi )\Vert _{L^{p'}}\\&\le C\sum ^K_{k=1}\Vert \chi _{A_k}\Vert _{L^p_{\beta +(\alpha -nz+mz)\gamma }}<\infty . \end{aligned}$$

Notice \(A_k\) is bounded, there exists an open ball B(0, R) with radius \(R>0\) such that \(A_k\subset B(0,R)\), for all \(1\le k\le K\). Then, for \(z_1,z_2\in \{0\le \text {Re}z\le 1\}\), by Hölder’s inequality and the boundedness of T, we have

$$\begin{aligned}&|F(z_1)-F(z_2)|\\&\quad \,\le \sum ^K_{k=1}\sum ^J_{j=1}a_kb_j\left\| \chi _{A_k}(1+|\xi |)^{\beta +\alpha \gamma }\left| (1+|\xi |)^{(m-n)z_1\gamma }-(1+|\xi |)^{(m-n)z_2\gamma }\right| \right\| _{L^p}\Vert \chi _{B_j}(\xi )\Vert _{L^{p'}}\\&\quad \,\le C_{g}\sum ^K_{k=1}\left\| \chi _{A_k}(1+|\xi |)^{\beta +\alpha \gamma } \min \{1,(1+|\xi |)^{(m-n)\gamma }\}\ln (1+|\xi |)\right\| _{L^p}|z_1-z_2|\\&\quad \,\le C_{R}|z_1-z_2|\rightarrow 0, \end{aligned}$$

as \(|z_1-z_2|\rightarrow 0\). This proves the claim.

(ii). Claim: F(z) is analytic in \(\{0<\text {Re}z< 1\}\).

Indeed, similarly, for \(z,z_0\in \{0<\text {Re}z< 1\}\), by Hölder’s inequality and the boundedness of T and noticing that \(\{A_k\}^K_{k=1}\) is uniformly bounded, we have

$$\begin{aligned}&\quad \,\bigg |\frac{F(z)-F(z_0)}{z-z_0} - \sum ^K_{k=1}\sum ^J_{j=1}a_kb_je^{i\alpha _k}e^{i\beta _j}\\&\qquad \qquad \qquad \int _{\mathbb {R}^d}T\Big (\chi _{A_k}\partial _z\Big [(1+|\cdot |)^{(\alpha -nz-m(1-z))\gamma }\Big ]\Big |_{z=z_0}\Big )\chi _{B_j}(\xi )(1+|\xi |)^\beta \,\mathrm{d}\xi \Big |\\&\le C \sum ^K_{k=1}\Big \Vert \frac{(1+|\xi |)^{(m-n)z\gamma }-(1+|\xi |)^{(m-n)z_0\gamma }}{z-z_0}\\&\qquad \qquad \qquad \qquad \qquad -(m-n)\gamma (1+|\xi |)^{(m-n)z_0\gamma }\ln (1+|\xi |)\Big \Vert _{L^p(A_k)}\\&\le C \sum ^K_{k=1}(m-n)\Big \Vert \Big ((1+|\xi |)^{(m-n)(z_0+t(z-z_0))\gamma }\\ {}&\qquad \qquad \qquad \qquad \qquad \qquad \qquad -(1+|\xi |)^{(m-n)z_0\gamma }\Big )\ln (1+|\xi |)\Big \Vert _{L^p(A_k)},\\&\le C \sum ^K_{k=1}(m-n)^2\Big \Vert (1+|\xi |)^{(m-n)(z_0+st(z-z_0))\gamma }(\ln (1+|\xi |))^2\Big \Vert _{L^p(A_k)}t|z-z_0|, \end{aligned}$$

for some \(s,t\in (0,1)\). Notice \(z\rightarrow z_0\) implies \(t,s\rightarrow 0\) and \(A_k\) are uniformly bounded; thus, the limit \(\lim _{z\rightarrow z_0}\frac{F(z)-F(z_0)}{z-z_0}\) exists and hence F(z) is analytic.

(iii). If \(\text {Re}z = 0\), by using Hölder’s inequality and the boundedness of T, we have

$$\begin{aligned} |F(z)|\le \Vert Tf_z\Vert _{L^p_\beta }\Vert g\Vert _{L^{p'}} \le A_n\Vert f_z\Vert _{L^p_{\beta +n\gamma }}\Vert g\Vert _{L^{p'}} = A_n\Vert f\Vert _{L^p_{\beta +\alpha \gamma }}\Vert g\Vert _{L^{p'}}. \end{aligned}$$

If \(\text {Re}z =1\), similarly we have

$$\begin{aligned} |F(z)|\le \Vert Tf_z\Vert _{L^p_\beta }\Vert g\Vert _{L^{p'}} \le A_m\Vert f_z\Vert _{L^p_{\beta +m\gamma }}\Vert g\Vert _{L^{p'}} = A_m\Vert f\Vert _{L^p_{\beta +\alpha \gamma }}\Vert g\Vert _{L^{p'}}. \end{aligned}$$

Therefore, we can apply the Hadamard’s three-lines theorem. When \(\text {Re}z=\theta \),

$$\begin{aligned} |F(z)|\le A_n^\theta A_m^{1-\theta }\Vert f\Vert _{L^p_{\beta +\alpha \gamma }}\Vert g\Vert _{L^{p'}}. \end{aligned}$$

Thus, for any simple function f in \(L^p_{\beta +\alpha \gamma }\),

$$\begin{aligned} \Vert Tf\Vert _{L^p_\beta } = \sup _{\Vert g\Vert _{L^{p'}}\le 1, g\text { is simple}}|F(\theta )| \le A_n^\theta A_m^{1-\theta }\Vert f\Vert _{L^p_{\beta +\alpha \gamma }}. \end{aligned}$$

Since simple functions are dense in \(L^p_{\beta +\alpha \gamma }\), we proved the theorem.

Preliminary Lemmas and Properties of L

Lemma D.1

For \(A_1,A_2>0\), \(d\ge 3\). Denote \( b=\left( \frac{\xi +\xi _*}{2}\cdot \frac{\xi _*-\xi }{|\xi _*-\xi |}\right) \frac{\xi _*-\xi }{|\xi _*-\xi |}\). Then,

  1. (1)

    For \(\alpha \in (-\infty ,d)\),

    $$\begin{aligned} \int _{\mathbb {R}^d}\frac{1}{|\xi _*-\xi |^\alpha }e^{-A_1|\xi _*-\xi |^2-A_2|b|^2}\,\mathrm{d}\xi _* \le C\frac{1}{1+|\xi |}. \end{aligned}$$
    (72)
  2. (2)

    For \(\alpha \in [0,d)\),

    $$\begin{aligned} \int _{\mathbb {R}^d}\frac{1}{|\xi _*-\xi |^\alpha }e^{-A_1|\xi _*|^2}\,\mathrm{d}\xi _* \le C\frac{1}{(1+|\xi |)^\alpha }. \end{aligned}$$
    (73)
  3. (3)

    For \(\alpha \in [0,d)\), \(\beta \in \mathbb {R}\),

    $$\begin{aligned} \int _{\mathbb {R}^d}\frac{1}{|\xi _*-\xi |^\alpha (1+|\xi _*|)^\beta }e^{-A_1|\xi _*-\xi |^2-A_2|b|^2}\,\mathrm{d}\xi _* \le C\frac{1}{(1+|\xi |)^{\beta +1}} \end{aligned}$$
    (74)

Proof

  1. 1.

    If \(\alpha <d\),

    $$\begin{aligned}&\int _{\mathbb {R}^d}\frac{1}{|\xi _*-\xi |^\alpha }\exp (-A_1|\xi _*-\xi |^2-A_2|b|^2)\,\mathrm{d}\xi _*\\&\quad \,= \int _{\mathbb {R}^d}\frac{1}{|\xi _*|^\alpha } \exp (-A_1|\xi _*|^2-\frac{A_2(|\xi _*|^2+2\xi _*\cdot \xi )^2}{4|\xi _*|^2})\,\mathrm{d}\xi _*\\&\quad \,= \int ^\infty _0 \frac{1}{r^{\alpha -d+1}}\exp (-A_1r^2)\ \int _{\mathbb {S}^{d-1}} \exp (-\frac{A_2(r+2\xi _*\cdot \xi )^2}{4})\,d\sigma (\xi _*)\mathrm{d}r. \end{aligned}$$

    By integration over sphere,

    $$\begin{aligned}&\int _{\mathbb {S}^{d-1}} \exp (-\frac{A_2(r+2\xi _*\cdot \xi )^2}{4})\,d\sigma (\xi _*)\\&\quad = \frac{2\pi ^{\frac{d-1}{2}}}{\Gamma (\frac{d-1}{2})} \int ^1_{-1}\exp (-\frac{A_2(r+2s|\xi |)^2}{4})(1-s^2)^{\frac{d-3}{2}} ds\\&\le C \int ^1_{-1}\exp (-\frac{A_2(r+2s|\xi |)^2}{4}) ds. \end{aligned}$$

    If \(|\xi |\ge 1\), we have

    $$\begin{aligned} \int ^1_{-1}\exp (-\frac{A_2(r+2s|\xi |)^2}{4}) ds&= \frac{1}{2|\xi |}\int ^{r+2|\xi |}_{r-2|\xi |}\exp (-\frac{A_2s^2}{4})\,ds \le C\frac{1}{1+|\xi |}, \end{aligned}$$

    and if \(|\xi |\le 1\), we have

    $$\begin{aligned} \int ^1_{-1}\exp (-\frac{A_2(r-2s|\xi |)^2}{4}) ds&\le 2\le \frac{C}{1+|\xi |}. \end{aligned}$$

    These estimates are independent of r, and we obtain (72).

  2. 2.

    Fix \(0\le \alpha <d\). If \(|\xi |\le 1\), we have

    $$\begin{aligned}&\int _{\mathbb {R}^d}\frac{1}{|\xi _*-\xi |^\alpha }\exp (-A_1|\xi _*|^2)\,\mathrm{d}\xi _*\\&\quad \,=\int _{|\xi _*-\xi |>2}\frac{1}{|\xi _*-\xi |^\alpha }\exp (-A_1|\xi _*|^2)\,\mathrm{d}\xi _* +\int _{|\xi _*-\xi |\le 2}\frac{1}{|\xi _*-\xi |^\alpha }\exp (-A_1|\xi _*|^2)\,\mathrm{d}\xi _*\\&\quad \,\le \int _{|\xi _*|>1}\frac{1}{2^\alpha }\exp (-A_1|\xi _*|^2)\,\mathrm{d}\xi _* +\int _{|\xi _*-\xi |\le 2}\frac{1}{|\xi _*-\xi |^\alpha }\,\mathrm{d}\xi _*\\&\quad \,\le C. \end{aligned}$$

    If \(|\xi |\ge 1\), notice \(|\xi _*-\xi |\le \frac{|\xi |}{2}\) implies \(|\xi _*|\ge |\xi |/2\ge |\xi _*-\xi |\), we have

    $$\begin{aligned}&\int _{\mathbb {R}^d}\frac{1}{|\xi _*-\xi |^\alpha }\exp (-A_1|\xi _*|^2)\,\mathrm{d}\xi _*\\&\quad \,\le \Big (\int _{|\xi _*-\xi |>\frac{|\xi |}{2}} +\int _{|\xi _*-\xi |\le \frac{|\xi |}{2}}\Big )\frac{1}{|\xi _*-\xi |^\alpha }\exp (-A_1|\xi _*|^2)\,\mathrm{d}\xi _*\\&\quad \,\le \int _{|\xi _*-\xi |>\frac{|\xi |}{2}}\frac{1}{(\frac{|\xi |}{2})^\alpha }\exp (-A_1|\xi _*|^2)\,\mathrm{d}\xi _*\\&\qquad \qquad +\int _{|\xi _*-\xi |\le \frac{|\xi |}{2}}\frac{1}{|\xi _*-\xi |^\alpha }\exp (-\frac{A_1|\xi _*-\xi |^2}{2})\,\mathrm{d}\xi _*\ \exp (-\frac{A_1|\xi |^2}{8})\\&\quad \,\le C\left( \frac{1}{|\xi |^\alpha } + \exp (-\frac{A_1|\xi |^2}{8})\right) \\&\quad \,\le \frac{C}{(1+|\xi |)^\alpha }. \end{aligned}$$

    This proves (73).

  3. 3.

    Notice that \(|\xi _*|\le |\xi |/2\) implies \(|\xi _*-\xi |\ge |\xi |/2\). Thus, by (72),

    $$\begin{aligned}&\int _{\mathbb {R}^d}\frac{1}{|\xi _*-\xi |^\alpha (1+|\xi _*|)^\beta }\exp (-A_1|\xi _*-\xi |^2-A_2|b|^2)\,\mathrm{d}\xi _*\\&\quad \,\le \left( \int _{|\xi _*|>\frac{|\xi |}{2}} + \int _{|\xi _*|\le \frac{|\xi |}{2}}\right) \frac{1}{|\xi _*-\xi |^\alpha (1+|\xi _*|)^\beta }\exp (-A_1|\xi _*-\xi |^2-A_2|b|^2)\,\mathrm{d}\xi _*\\&\quad \,\le \frac{1}{(1+|\xi |/2)^\beta }\int _{|\xi _*|>\frac{|\xi |}{2}}\frac{1}{|\xi _*-\xi |^\alpha }\exp (-A_1|\xi _*-\xi |^2-A_2|b|^2)\,\mathrm{d}\xi _*\\&\qquad + \int _{|\xi _*|\le \frac{|\xi |}{2}} \frac{1}{|\xi _*-\xi |^\alpha }\exp (-\frac{A_1|\xi _*-\xi |^2}{2}-A_2|b|^2)\,\mathrm{d}\xi _*\ \exp (-\frac{A_1|\xi |^2}{8})\\&\quad \,\le \frac{C}{(1+|\xi |)^\beta }\left( \frac{1}{1+|\xi |}+\exp (-\frac{A_1|\xi |^2}{8})\right) . \end{aligned}$$

    This gives (74).

Proof of Theorem 2.1

  1. 1.

    Firstly using \(\mathbf {M}\mathbf {M}_* = \mathbf {M}'\mathbf {M}'_*\), we have

    $$\begin{aligned} Lf&= \int _{\mathbb {R}^d}\int _{\mathbb {S}^{d-1}}\mathbf {M}^{\frac{1}{2}}_*\left( f'_*\left( \mathbf {M}^{\frac{1}{2}}\right) '+f'\left( \mathbf {M}^{\frac{1}{2}}\right) '\right) q(\xi -\xi _*,\theta )\,\mathrm{d}\omega \mathrm{d}\xi _*\\&\qquad - \mathbf {M}^{\frac{1}{2}}\int _{\mathbb {R}^d}\int _{\mathbb {S}^{d-1}}\mathbf {M}^{\frac{1}{2}}_*q(\xi -\xi _*,\theta )\,\mathrm{d}n\mathrm{d}\xi _* - f\int _{\mathbb {R}^d}\int _{\mathbb {S}^{d-1}}\mathbf {M}_*q(\xi -\xi _*,\theta )\,\mathrm{d}n\mathrm{d}\xi _*. \end{aligned}$$

    It suffices to deal with the first term, which denoted by I. Consider the unit vector \(m\in \text {Span}\{\xi -\xi _*,\omega \}\) such that \(m\perp \omega \). Then, performing a changing variable from \(\omega \) to m (where one needs to use polar coordinate on \(\mathbb {S}^{d-1}\) to do the change of variable), we have

    $$\begin{aligned}&\int _{\mathbb {R}^d}\int _{\mathbb {S}^{d-1}}\mathbf {M}^{\frac{1}{2}}_*\left( \mathbf {M}^{\frac{1}{2}}\right) 'f'_*q(\xi -\xi _*,\theta )\,\mathrm{d}\omega \mathrm{d}\xi _*\\&\quad = \int _{\mathbb {R}^d}\int _{\mathbb {S}^{d-1}}\mathbf {M}^{\frac{1}{2}}_*\left( \mathbf {M}^{\frac{1}{2}}\right) '_*f'q(\xi -\xi _*,\theta )\,\mathrm{d}\omega \mathrm{d}\xi _*. \end{aligned}$$

    Thus, by Fubini’s theorem,

    $$\begin{aligned} I&= 2\int _{\mathbb {S}^{d-1}}\int _{\mathbb {R}^d}\mathbf {M}^{\frac{1}{2}}_*\left( \mathbf {M}^{\frac{1}{2}}\right) '_*f'q(\xi -\xi _*,\theta )\, \mathrm{d}\xi _*\mathrm{d}\omega \\&=2\int _{\mathbb {S}^{d-1}}\int _{\mathbb {R}^d}\mathbf {M}^{\frac{1}{2}}(\xi _*+\xi )\mathbf {M}^{\frac{1}{2}}(\xi _*+\xi -(\xi _*\cdot \omega )\omega )f(\xi +(\xi _*\cdot \omega )\omega )q(\xi _*,\theta )\, \mathrm{d}\xi _*\mathrm{d}\omega \\&=4\int _{\mathbb {S}^{d-1}}\int _{\mathbb {R}_+}\int _{\mathbb {P}_\omega }\mathbf {M}^{\frac{1}{2}}(x+r\omega +\xi )\mathbf {M}^{\frac{1}{2}}(x+\xi )f(\xi +r\omega )q(x+r\omega ,\theta )\, \mathrm{d}x\mathrm{d}r\mathrm{d}\omega , \end{aligned}$$

    where \(\mathbb {P}_\omega \) is the hyperplane in \({\mathbb {R}^d}\) that is orthogonal to \(\omega \) and contains the origin. Here, we remark that one actually needs the boundedness on K to make sure that Fubini’s theorem can be applied. Then, by change of variable \(\xi _*\mapsto \xi _*-\xi \), we have

    $$\begin{aligned} I&=4\int _{{\mathbb {R}^d}}\int _{\mathbb {P}_{\xi _*}}\mathbf {M}^{\frac{1}{2}}(x+\xi _*+\xi )\mathbf {M}^{\frac{1}{2}}(x+\xi )f(\xi +\xi _*)\frac{q(x+\xi _*,\theta )}{|\xi _*|^{d-1}}\,\mathrm{d}x\mathrm{d}\xi _*\\&=4\int _{{\mathbb {R}^d}}\int _{\mathbb {P}_{\xi _*-\xi }}\frac{1}{(2\pi )^{-\frac{d}{2}}} \exp \left( -\frac{|x+a|^2}{2}-\frac{|b|^2}{2}-\frac{|\xi _*-\xi |^2}{8}\right) \\&\quad \times \frac{f(\xi _*)q(x+\xi _*-\xi ,\theta )}{|\xi _*-\xi |^{d-1}}\,\mathrm{d}x\mathrm{d}\xi _*\\&=4\int _{{\mathbb {R}^d}}\int _{\mathbb {P}_{\xi _*-\xi }}\frac{e^{-\frac{|x|^2}{2}}}{(2\pi )^{-\frac{d}{2}}}q(x-a+\xi _*-\xi ,\theta )\,\mathrm{d}x\\&\quad \times \exp \left( -\frac{|b|^2}{2}-\frac{|\xi _*-\xi |^2}{8}\right) \frac{f(\xi _*)}{|\xi _*-\xi |^{d-1}}\,\mathrm{d}\xi _*, \end{aligned}$$

    where \(\theta \) is angle between \(x-a+\xi _*-\xi \) and \(\xi _*-\xi \). This gives the expression of \(k_1\).

  2. 2.

    \(\nu \) is defined by \( \nu (\xi ) = \int _{\mathbb {R}^d}\int _{\mathbb {S}^{d-1}}\mathbf {M}^{\frac{1}{2}}_*q(\xi -\xi _*,\theta )\,\mathrm{d}\omega \mathrm{d}\xi _*\). Recall the cutoff assumption (4), then we have

    $$\begin{aligned} \nu (\xi )&= q_0(2\pi )^{d/4}\int _{\mathbb {R}^d}\exp (-\frac{|\xi _*|^2}{4})|\xi -\xi _*|^{-\gamma }\mathrm{d}\xi _*. \end{aligned}$$

    On the one hand, by (73) in Lemma D.1, we have

    $$\begin{aligned} \nu (\xi )&= q_0(2\pi )^{d/4}\int _{\mathbb {R}^d}\exp (-\frac{|\xi _*|^2}{4})|\xi -\xi _*|^{-\gamma }\,\mathrm{d}\xi _* \le C(1+|\xi |)^{-\gamma }. \end{aligned}$$

    On the other hand, noticing \(|\xi _*-\xi |\le 1+|\xi _*|+|\xi |\le (1+|\xi _*|)(1+|\xi |)\), we have

    $$\begin{aligned} \nu (\xi )&\ge q_0(2\pi )^{d/4}\int _{\mathbb {R}^d}\exp (-\frac{|\xi _*|^2}{4})(1+|\xi _*|)^{-\gamma }\,\mathrm{d}\xi _*\,(1+|\xi |)^{-\gamma }\\&\ge C(1+|\xi |)^{-\gamma }. \end{aligned}$$

    This proves statement (i).

  3. 3.

    For the part \(k_1\), we firstly estimate \(J := \int _{\mathbb {P}_{\xi _*-\xi }}e^{-\frac{|x|^2}{2}} q(x-a+\xi _*-\xi ,\theta )\,\mathrm{d}x\). Notice \(a\in \mathbb {P}_{\xi _*-\xi }\) and integral is taken in \(\mathbb {P}_{\xi _*-\xi }\), we have

    $$\begin{aligned} J&\le \int _{\mathbb {P}_{\xi _*-\xi }}e^{-\frac{|x|^2}{2}} |x-a+\xi _*-\xi |^{-\gamma } |\cos \theta |\,\mathrm{d}x\\&\le \int _{\mathbb {P}_{\xi _*-\xi }}e^{-\frac{|x|^2}{2}} |x-a+\xi _*-\xi |^{-\gamma } \frac{|(x-a+\xi _*-\xi )\cdot (\xi _*-\xi )|}{|x-a+\xi _*-\xi |\,|\xi _*-\xi |}\,\mathrm{d}x\\&= \int _{\mathbb {P}_{\xi _*-\xi }}e^{-\frac{|x|^2}{2}} \frac{|\xi _*-\xi |}{(|x-a|^2+|\xi _*-\xi |^2)^{(\gamma +1)/2}}\,\mathrm{d}x. \end{aligned}$$

    If \(|\xi _*-\xi |\le 1\), by (73) in Lemma D.1,

    $$\begin{aligned} \frac{J}{|\xi _*-\xi |}&\le \int _{\mathbb {P}_{\xi _*-\xi }}e^{-\frac{|x|^2}{2}}\frac{1}{|x-a|^{\gamma +1}}\,\mathrm{d}x \le C\frac{1}{(1+|a|)^{\gamma +1}}. \end{aligned}$$

    If \(|\xi _*-\xi |> 1\), we split \(\mathbb {P}_{\xi _*-\xi }\) as

    $$\begin{aligned} B_1=\big \{x\in \mathbb {P}_{\xi _*-\xi }\,:\,|x-a|\le \frac{|a|}{2}\big \}, \quad B_2=\big \{x\in \mathbb {P}_{\xi _*-\xi }\,:\,|x-a|> \frac{|a|}{2}\big \}. \end{aligned}$$

    Noticing \(|x-a|\le \frac{|a|}{2}\) implies \(|x|>\frac{|a|}{2}\), we have

    $$\begin{aligned} \,\frac{J}{|\xi _*-\xi |}&\le \left( \int _{B_1 }+\int _{B_2 }\right) e^{-\frac{|x|^2}{2}} \frac{1}{(|x-a|^2+|\xi _*-\xi |^2)^{(\gamma +1)/2}}\,\mathrm{d}x\\&\le C\left( e^{-\frac{|a|^2}{16}} \frac{1}{|\xi _*-\xi |^{\gamma +1}} +\frac{1}{(|a|+|\xi _*-\xi |)^{\gamma +1}}\right) \\&\le C\frac{1}{(|a|+|\xi _*-\xi |)^{\gamma +1}}, \end{aligned}$$

    by using the fact that

    $$\begin{aligned} \sup _{a\in {\mathbb {R}^d},|\xi _*-\xi |\ge 1}e^{-\frac{|a|^2}{16}} \frac{(|a|+|\xi _*-\xi |)^{\gamma +1}}{|\xi _*-\xi |^{\gamma +1}} \le {\left\{ \begin{array}{ll} e^{-\frac{|a|^2}{16}}(2|a|)^{\gamma +1}, &{}\text { if }|a|>|\xi _*-\xi |,\\ 2^{\gamma +1}, &{}\text { if }|a|\le |\xi _*-\xi |. \end{array}\right. } \end{aligned}$$

    Thus, for any \(\varepsilon \in (0,1)\),

    $$\begin{aligned} |k_1(\xi ,\xi _*)|&\le \frac{C}{|\xi _*-\xi |^{d-2}}\frac{1}{(1+|a|+|\xi _*-\xi |)^{\gamma +1}}\ \exp (-\frac{|b|^2}{2}-\frac{|\xi _*-\xi |^2}{8}),\\&\le \frac{C}{|\xi _*-\xi |^{d-2}}\frac{1}{(1+|a|+|b|+|\xi _*-\xi |)^{\gamma +1}}\ \exp (-(1-\varepsilon )(\frac{|b|^2}{2}-\frac{|\xi _*-\xi |^2}{8})),\\&\le \frac{C_{\varepsilon }}{|\xi _*-\xi |^{d-2}}\frac{1}{(1+|\xi |+|\xi _*|)^{\gamma +1}}\ \exp (-(1-\varepsilon )(\frac{|b|^2}{2}-\frac{|\xi _*-\xi |^2}{8})), \end{aligned}$$

    where we use the fact that \(|a|^2+|b|^2 = \frac{|\xi _*+\xi |^2}{4}\).

Proof of Theorem 2.5

Notice \(\nu \) is a bounded positive function and K is linear continuous integral operator with symmetric kernel \(k(\xi ,\xi _*)\), so, \(L=\nu +K\) is self-adjoint. For the non-positiveness, we can use a well-known fact that

$$\begin{aligned}&(Q(f,g),\psi )_{L^2} \\&\quad \,= \frac{1}{4}\int _{\mathbb {R}^d}\int _{\mathbb {R}^d}\int _{\mathbb {S}^{d-1}}q(\psi +\psi _*-\psi '-\psi '_*)(f'_*g'+f'g'_*-f_*g-fg_*)\,\mathrm{d}\omega \mathrm{d}\xi _*\mathrm{d}\xi , \end{aligned}$$

which is valid whenever the integral is absolutely convergent. Then, for \(f\in L^2({\mathbb {R}^d})\), since K is bounded on \(L^2\) and \(\nu \in L^\infty \), we can apply this identity to get

$$\begin{aligned} (Lf,f)_{L^2} \le 0. \end{aligned}$$
(75)

Let \(f\in L^2\) such that \(Lf=0\). Then, \((Lf,f)_{L^2}=0\). Using (75) and the fact \(\mathbf {M}\mathbf {M}_*=\mathbf {M}'\mathbf {M}'_*\), we have for a.e. \(\xi ,\xi _*\in {\mathbb {R}^d}\), \(\omega \in \mathbb {S}^{d-1}\) that

$$\begin{aligned} f'_*\left( \mathbf {M}^{-\frac{1}{2}}\right) '_*+f'\left( \mathbf {M}^{-\frac{1}{2}}\right) ' = f_*\mathbf {M}^{-\frac{1}{2}}_*+f\mathbf {M}^{-\frac{1}{2}}. \end{aligned}$$

Thus, by the theory of collision invariant, \(f\in \) Span\(\{\mathbf {M}^{\frac{1}{2}}, \xi _1\mathbf {M}^{\frac{1}{2}}, \dots , \xi _d\mathbf {M}^{\frac{1}{2}}, |\xi |^2\mathbf {M}^{\frac{1}{2}}\}\).

Proof of Lemma 3.8

  1. 1.

    Recall (2) and \(\Gamma (g,h):=\mathbf {M}^{-1/2}Q(\mathbf {M}^{1/2}g,\mathbf {M}^{1/2}h)\). For \(f,g\in L^\infty _\beta ({\mathbb {R}^d})\),

    $$\begin{aligned} |\Gamma (f,g)|&\le \int _{\mathbb {R}^d}\int _{S^{d-1}} \mathbf {M}_*^{1/2}\big (|f'g'_*| + |f'_*g'|+ |fg_*|+|f_*g|\big )q(\xi -\xi _*,\theta )\,\mathrm{d}\omega \mathrm{d}\xi _*\\&=: \Gamma _1(f,g)+\Gamma _2(f,g)+\Gamma _3(f,g)+\Gamma _4(f,g). \end{aligned}$$

    Apply conservation laws (3), we control the weight \((1+|\xi |)^{\beta }\) by \((1+|\xi |)^{\beta }(1+|\xi _*|)^{\beta }\), \((1+|\xi '|)^{\beta }(1+|\xi '_*|)^{\beta }\) correspondingly.

    $$\begin{aligned}&\Vert \Gamma (f,g)\Vert _{L^\infty _{\beta +\gamma }({\mathbb {R}^d})}\\&\quad \,\le \sup _{\xi \in {\mathbb {R}^d}}\int _{\mathbb {R}^d}\int _{S^{d-1}} \mathbf {M}_*^{1/2}|f'g'_*| + |f'_*g'|+ |fg_*| \\&\qquad +|f_*g|) (1+|\xi |)^{\beta +\gamma }q(\xi -\xi _*,\theta )\,\mathrm{d}\omega \mathrm{d}\xi _*\\&\quad \,\le 4\Vert f\Vert _{L^\infty _\beta }\Vert g\Vert _{L^\infty _\beta } \sup _{\xi \in {\mathbb {R}^d}}(1+|\xi |)^\gamma \int _{\mathbb {R}^d}\int _{S^{d-1}} \mathbf {M}_*^{1/2}q(\xi -\xi _*,\theta )\,\mathrm{d}\omega \mathrm{d}\xi _*\\&\quad \,\le 4\nu _1\Vert f\Vert _{L^\infty _\beta }\Vert g\Vert _{L^\infty _\beta }. \end{aligned}$$

    On the other hand, \(l>\frac{d}{2}\) assures that the Sobolev space \(H^l\) is a Banach algebra. Thus, for \(f,g\in L^\infty _\beta (H^l)\), \(\Vert \Gamma _j(f,g)\Vert _{H^l}\le \Gamma _j(\Vert f\Vert _{H^l},\Vert g\Vert _{H^l})\). This proves the first assertion.

  2. 2.

    For \(\beta _0>\frac{d}{2}\), we have

    $$\begin{aligned} \Vert f\Vert _{L^2_{\alpha \gamma }}&\le \Vert f\Vert _{L^\infty _{\beta _0+\alpha \gamma }}\Vert (1+|\xi |)^{-2\beta _0}\Vert _{L^2}\le C\Vert f\Vert _{L^\infty _{\beta _0+\alpha \gamma }}. \end{aligned}$$

    For \(f,g\in L^2_{\alpha \gamma }(L^1)\), \(\beta _0>\frac{d}{2}\),

    $$\begin{aligned}&\big \Vert \Gamma (f,g)\big \Vert _{L^2_{\alpha \gamma }(L^1)}\\&\quad \le C\Big \Vert \int _{\mathbb {R}^d}\int _{S^{d-1}} \mathbf {M}_*^{\frac{1}{2}}\big (\Vert f'g'_*\Vert _{L^1_x} + \Vert f'_*g'\Vert _{L^1_x}\\&\qquad + \Vert fg_*\Vert _{L^1_x} +\Vert f_*g\Vert _{L^1_x}\big ) q\,\mathrm{d}\omega \mathrm{d}\xi _*\Big \Vert _{L^\infty _{\beta _0+\alpha \gamma }}\\&\quad \le C\big \Vert \Gamma (\Vert f\Vert _{L^2_x},\Vert g\Vert _{L^2_x})\big \Vert _{L^\infty _{\beta _0+\alpha \gamma }}\\&\quad \le C \Vert f\Vert _{L^\infty _{\beta _0-\gamma +\alpha \gamma }(L^2_x)}\Vert g\Vert _{L^\infty _{\beta _0-\gamma +\alpha \gamma }(L^2_x)}. \end{aligned}$$

    If \(\beta >\frac{d}{2}-\gamma +\alpha \gamma \), then we can find \(\beta _0\in (\frac{d}{2},\beta +\gamma -\alpha \gamma )\) to assure the above inequality valid. Then,

    $$\begin{aligned} \Vert \Gamma (f,g)\Vert _{L^2_{\alpha \gamma }(L^1)}&\le C\Vert f\Vert _{L^\infty _{\beta }(L^2_x)}\Vert g\Vert _{L^\infty _{\beta }(L^2_x)} \le C\Vert f\Vert _{L^\infty _{\beta }(H^l)}\Vert g\Vert _{L^\infty _{\beta }(H^l)}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D. On the Cauchy problem of Boltzmann equation with a very soft potential. J. Evol. Equ. 22, 17 (2022). https://doi.org/10.1007/s00028-022-00767-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-022-00767-w

Keywords

Mathematics Subject Classification

Navigation