Skip to main content
Log in

A minimal area problem in conformal mapping

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

LetS denote the usual class of functionsf holomorphic and univalent in the unit diskU such thatf(0)=f′(0)−1=0. The main result of the paper is that area (f(U) ≥27π/7)(2-α)−2 for allfS such that |f″(0)|=2α, 1/2<α<2. This solves a long-standing extremal problem for the class of functions considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Aharonov and H. S. Shapiro,A minimal-area problem in conformal mapping, Preliminary Report, Royal Institute of Technology Research Report, Stockholm, 1973, TRITA-MAT-1973-7.

  2. D. Aharonov and H. S. Shapiro,A minimal-area problem in conformal mapping, inCanterbury 1973, (J, Clunie and W. K. Hayman, eds.), London Math. Soc. Lecture Notes, Series12, 1973, pp. 1–5.

  3. D. Aharonov and H. S. Shapiro,Domains on which analytic functions satisfy quadrature identities, J. Analyse Math.30 (1976), 39–73.

    MATH  MathSciNet  Google Scholar 

  4. D. Aharonov and H. S. Shapiro,A minimal-area problem in conformal mapping, Preliminary Report II, Royal Institute of Technology Research Report, Stockholm 1978, TRITA-MAT-1978-5.

  5. L. V. AhlforsLectures on Quasiconformal Mappings Van Nostrand Mathematical Studies, D. Van Nostrand Company, New York, 1966.

    MATH  Google Scholar 

  6. L. V. Ahlfors,Conformal Invariants. Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.

    MATH  Google Scholar 

  7. A. Baernstein, II,Integral means, univalent functions and circular symmetrization, Acta Math.133 (1974), 139–169.

    Article  MathSciNet  Google Scholar 

  8. P. Davis,The Schwarz Function and Its Applications, Carus Math. Monograph17 Math. Assoc. America, 1974.

  9. V. N. Dubinin,Symmetrization in geometric theory of functions of a complex variable, Uspehi Mat. Nauk49 (1994), 3–76 (in Russian); English translation: Russian Math. Surveys49: 1 (1994), 1–79.

    MathSciNet  Google Scholar 

  10. W. K. Hayman,Multivalent Functions, Cambridge Univ. Press Cambridge, 1958.

    MATH  Google Scholar 

  11. W. K. Hayman,Research Problems in Function Theory, Athlone Press, University of London, 1967.

  12. J. A. Jenkins,On circularly symmetric functions, Proc. Amer. Math. Soc.6 (1955), 620–624.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. A. Jenkins,Univalent Functions and Conformal Mappings, second edn., Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965.

    Google Scholar 

  14. Z. Nehari,Conformal Mapping, McGraw-Hill, New York, 1952.

    MATH  Google Scholar 

  15. G. Pick,Ueber die konforme Abbildung eines Kreises auf ein schlichtes und zugliech beschranktes Gebiet, Kaiserl. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. IIa,126 (1917), 247–263.

    MATH  Google Scholar 

  16. Chr. Pommerenke,Univalent Functions, Mathematische Lehrbucher, Göttingen 1975.

    MATH  Google Scholar 

  17. M. H. Protter and H. F. WeinbergerMaximum Principles in Differential Equations, Prentice-Hall, Engelwood Cliffs, N.J., 1984.

    MATH  Google Scholar 

  18. M. Sakai,Quadrature Domains, Lecture Notes in Math.934, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  19. H. S. Shapiro,The Schwarz Function and Its Generalization to Higher Dimensions, Wiley-Interscience, New York, 1992.

    MATH  Google Scholar 

  20. A. Yu. Solynin,The boundary distortion and extremal problem in certain classes of univalent functions, Zap. Nauchn. Sem. POMI204 (1993), 115–142 (in Russian).

    Google Scholar 

  21. A. Yu. Solynin,Functional inequalities via polarization, Algebra i Analiz8 (1996), 145–185 (in Russian); English translation: St. Petersburg Math. J.8 (1997), 1015–1038.

    Google Scholar 

  22. A. Yu. Solynin,Extremal problems on conformal moduli and estimates for harmonic measures, J. Analyse Math.74 (1998), 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Wolontis,Properties of conformal invariants, Amer. J. Math.74 (1952), 587–606.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharonov, D., Shapiro, H.S. & Solynin, A.Y. A minimal area problem in conformal mapping. J. Anal. Math. 78, 157–176 (1999). https://doi.org/10.1007/BF02791132

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02791132

Keywords

Navigation